Chapter – 5: Complex Numbers and Quadratic Equations
Exercise 5.1
Express each of the complex number given in the Exercises 1 to 10 in the form a + ib.
1. (5i) (-3/5i)
Solution: –
(5i) (-3/5i) = 5 x (-3/5) x i2
= -3 x -1 [i2 = -1]
= 3
Hence,
(5i) (-3/5i) = 3 + i0
2. i9 + i19
Solution: –
i9 + i19 = (i2)4. i + (i2)9. i
= (-1)4 . i + (-1)9 .i
= 1 x i + -1 x i
= i – i
= 0
Hence,
i9 + i19 = 0 + i0
3. i-39
Solution: –
i-39 = 1/ i39 = 1/ i4 x 9 + 3 = 1/ (19 x i3) = 1/ i3 = 1/ (-i) [i4 = 1, i3 = -I and i2 = -1]
Now, multiplying the numerator and denominator by i we get
i-39 = 1 x i / (-i x i)
= i/ 1 = i
Hence,
i-39 = 0 + i
4. 3(7 + i7) + i(7 + i7)
Solution: –
3(7 + i7) + i(7 + i7) = 21 + i21 + i7 + i2 7
= 21 + i28 – 7 [i2 = -1]
= 14 + i28
Hence,
3(7 + i7) + i(7 + i7) = 14 + i28
5. (1 – i) – (–1 + i6)
Solution: –
(1 – i) – (–1 + i6) = 1 – i + 1 – i6
= 2 – i7
Hence,
(1 – i) – (–1 + i6) = 2 – i7
6.
Solution: –
7.
Solution: –
8. (1 – i)4
Solution: –
(1 – i)4 = [(1 – i)2]2
= [1 + i2 – 2i]2
= [1 – 1 – 2i]2 [i2 = -1]
= (-2i)2
= 4(-1)
= -4
Hence, (1 – i)4 = -4 + 0i
9. (1/3 + 3i)3
Solution: –
Hence, (1/3 + 3i)3 = -242/27 – 26i
10. (-2 – 1/3i)3
Solution: –
Hence,
(-2 – 1/3i)3 = -22/3 – 107/27i
Find the multiplicative inverse of each of the complex numbers given in the Exercises 11 to 13.
11. 4 – 3i
Solution: –
Let’s consider z = 4 – 3i
Then,
= 4 + 3i and
|z|2 = 42 + (-3)2 = 16 + 9 = 25
Thus, the multiplicative inverse of 4 – 3i is given by z-1
12. √5 + 3i
Solution: –
Let’s consider z = √5 + 3i
|z|2 = (√5)2 + 32 = 5 + 9 = 14
Thus, the multiplicative inverse of √5 + 3i is given by z-1
13. – i
Solution: –
Let’s consider z = –i
Thus, the multiplicative inverse of –i is given by z-1
14. Express the following expression in the form of a + ib:
Solution: –
Exercise 5.2
Find the modulus and the arguments of each of the complex numbers in Exercises 1 to 2.
1. z = – 1 – i √3
Solution: –
2. z = -√3 + i
Solution: –
Convert each of the complex numbers given in Exercises 3 to 8 in the polar form:
3. 1 – i
Solution: –
4. – 1 + i
Solution: –
5. – 1 – i
Solution: –
6. – 3
Solution: –
7. 3 + i
Solution: –
8. i
Solution: –
Exercise 5.3
Solve each of the following equations:
1. x2 + 3 = 0
Solution: –
Given quadratic equation,
x2 + 3 = 0
On comparing it with ax2 + bx + c = 0, we have
a = 1, b = 0, and c = 3
So, the discriminant of the given equation will be
D = b2 – 4ac = 02 – 4 × 1 × 3 = –12
Hence, the required solutions are:
2. 2x2 + x + 1 = 0
Solution: –
Given quadratic equation,
2x2 + x + 1 = 0
On comparing it with ax2 + bx + c = 0, we have
a = 2, b = 1, and c = 1
So, the discriminant of the given equation will be
D = b2 – 4ac = 12 – 4 × 2 × 1 = 1 – 8 = –7
Hence, the required solutions are:
3. x2 + 3x + 9 = 0
Solution: –
Given quadratic equation,
x2 + 3x + 9 = 0
On comparing it with ax2 + bx + c = 0, we have
a = 1, b = 3, and c = 9
So, the discriminant of the given equation will be
D = b2 – 4ac = 32 – 4 × 1 × 9 = 9 – 36 = –27
Hence, the required solutions are:
4. –x2 + x – 2 = 0
Solution: –
Given quadratic equation,
–x2 + x – 2 = 0
On comparing it with ax2 + bx + c = 0, we have
a = –1, b = 1, and c = –2
So, the discriminant of the given equation will be
D = b2 – 4ac = 12 – 4 × (–1) × (–2) = 1 – 8 = –7
Hence, the required solutions are:
5. x2 + 3x + 5 = 0
Solution: –
Given quadratic equation,
x2 + 3x + 5 = 0
On comparing it with ax2 + bx + c = 0, we have
a = 1, b = 3, and c = 5
So, the discriminant of the given equation will be
D = b2 – 4ac = 32 – 4 × 1 × 5 =9 – 20 = –11
Hence, the required solutions are:
6. x2 – x + 2 = 0
Solution: –
Given quadratic equation,
x2 – x + 2 = 0
On comparing it with ax2 + bx + c = 0, we have
a = 1, b = –1, and c = 2
So, the discriminant of the given equation is
D = b2 – 4ac = (–1)2 – 4 × 1 × 2 = 1 – 8 = –7
Hence, the required solutions are
7. √2x2 + x + √2 = 0
Solution: –
Given quadratic equation,
√2x2 + x + √2 = 0
On comparing it with ax2 + bx + c = 0, we have
a = √2, b = 1, and c = √2
So, the discriminant of the given equation is
D = b2 – 4ac = (1)2 – 4 × √2 × √2 = 1 – 8 = –7
Hence, the required solutions are:
8. √3x2 – √2x + 3√3 = 0
Solution: –
Given quadratic equation,
√3x2 – √2x + 3√3 = 0
On comparing it with ax2 + bx + c = 0, we have
a = √3, b = -√2, and c = 3√3
So, the discriminant of the given equation is
D = b2 – 4ac = (-√2)2 – 4 × √3 × 3√3 = 2 – 36 = –34
Hence, the required solutions are:
9. x2 + x + 1/√2 = 0
Solution: –
Given quadratic equation,
x2 + x + 1/√2 = 0
It can be rewritten as,
√2x2 + √2x + 1 = 0
On comparing it with ax2 + bx + c = 0, we have
a = √2, b = √2, and c = 1
So, the discriminant of the given equation is
D = b2 – 4ac = (√2)2 – 4 × √2 × 1 = 2 – 4√2 = 2(1 – 2√2)
Hence, the required solutions are:
10. x2 + x/√2 + 1 = 0
Solution: –
Given quadratic equation,
x2 + x/√2 + 1 = 0
It can be rewritten as,
√2x2 + x + √2 = 0
On comparing it with ax2 + bx + c = 0, we have
a = √2, b = 1, and c = √2
So, the discriminant of the given equation is
D = b2 – 4ac = (1)2 – 4 × √2 × √2 = 1 – 8 = -7
Hence, the required solutions are:
Tags In
Related Posts
Leave a Reply Cancel reply
Error: Contact form not found.