Exercise 2.1

1. If 

, find the values of x and y.

Solution: –

Given,

As the ordered pairs are equal, the corresponding elements should also be equal.

Thus,

x/3 + 1 = 5/3 and y – 2/3 = 1/3

Solving, we get

x + 3 = 5 and 3y – 2 = 1 [Taking L.C.M and adding]

x = 2 and 3y = 3

Therefore,

x = 2 and y = 1

2. If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A × B)?

Solution: –

Given, set A has 3 elements and the elements of set B are {3, 4, and 5}.

So, the number of elements in set B = 3

Then, the number of elements in (A × B) = (Number of elements in A) × (Number of elements in B)

= 3 × 3 = 9

Therefore, the number of elements in (A × B) will be 9.

3. If G = {7, 8} and H = {5, 4, 2}, find G × H and H × G.

Solution: –

Given, G = {7, 8} and H = {5, 4, 2}

We know that,

The Cartesian product of two non-empty sets P and Q is given as

P × Q = {(pq): ∈ P, q ∈ Q}

So,

G × H = {(7, 5), (7, 4), (7, 2), (8, 5), (8, 4), (8, 2)}

H × G = {(5, 7), (5, 8), (4, 7), (4, 8), (2, 7), (2, 8)}

4. State whether each of the following statements are true or false. If the statement is false, rewrite the given statement correctly.

(i) If P = {mn} and Q = {nm}, then P × Q = {(mn), (nm)}.

(ii) If A and B are non-empty sets, then A × B is a non-empty set of ordered pairs (xy) such that x  A and y  B.

(iii) If A = {1, 2}, B = {3, 4}, then A × (B  Φ) = Φ.

Solution: –

(i) The statement is False. The correct statement is:

If P = {mn} and Q = {nm}, then

P × Q = {(mm), (mn), (n, m), (nn)}

(ii) True

(iii) True

5. If A = {–1, 1}, find A × A × A.

Solution: –

The A × A × A for a non-empty set A is given by

A × A × A = {(abc): ab∈ A}

Here, It is given A = {–1, 1}

So,

A × A × A = {(–1, –1, –1), (–1, –1, 1), (–1, 1, –1), (–1, 1, 1), (1, –1, –1), (1, –1, 1), (1, 1, –1), (1, 1, 1)}

6. If A × B = {(ax), (ay), (bx), (by)}. Find A and B.

Solution: –

Given,

A × B = {(ax), (a, y), (bx), (by)}

We know that the Cartesian product of two non-empty sets P and Q is given by:

P × Q = {(pq): p ∈ P, q ∈ Q}

Hence, A is the set of all first elements and B is the set of all second elements.

Therefore, A = {ab} and B = {xy}

7. Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that

(i) A × (B  C) = (A × B)  (A × C)

(ii) A × C is a subset of B × D

Solution: –

Given,

A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}

(i) To verify: A × (B ∩ C) = (A × B) ∩ (A × C)

Now, B ∩ C = {1, 2, 3, 4} ∩ {5, 6} = Φ

Thus,

L.H.S. = A × (B ∩ C) = A × Φ = Φ

Next,

A × B = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)}

A × C = {(1, 5), (1, 6), (2, 5), (2, 6)}

Thus,

R.H.S. = (A × B) ∩ (A × C) = Φ

Therefore, L.H.S. = R.H.S

– Hence verified

(ii) To verify: A × C is a subset of B × D

First,

A × C = {(1, 5), (1, 6), (2, 5), (2, 6)}

And,

B × D = {(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)}

Now, it’s clearly seen that all the elements of set A × C are the elements of set B × D.

Thus, A × C is a subset of B × D.

– Hence verified

8. Let A = {1, 2} and B = {3, 4}. Write A × B. How many subsets will A × B have? List them.

Solution: –

Given,

A = {1, 2} and B = {3, 4}

So,

A × B = {(1, 3), (1, 4), (2, 3), (2, 4)}

Number of elements in A × B is n(A × B) = 4

We know that,

If C is a set with n(C) = m, then n[P(C)] = 2m.

Thus, the set A × B has 24 = 16 subsets.

And, these subsets are as below:

Φ, {(1, 3)}, {(1, 4)}, {(2, 3)}, {(2, 4)}, {(1, 3), (1, 4)}, {(1, 3), (2, 3)}, {(1, 3), (2, 4)}, {(1, 4), (2, 3)}, {(1, 4), (2, 4)}, {(2, 3), (2, 4)}, {(1, 3), (1, 4), (2, 3)}, {(1, 3), (1, 4), (2, 4)}, {(1, 3), (2, 3), (2, 4)}, {(1, 4), (2, 3), (2, 4)}, {(1, 3), (1, 4), (2, 3), (2, 4)}

9. Let A and B be two sets such that n(A) = 3 and n (B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, find A and B, where xy and z are distinct elements.

Solution: –

Given,

n(A) = 3 and n(B) = 2; and (x, 1), (y, 2), (z, 1) are in A × B.

We know that,

A = Set of first elements of the ordered pair elements of A × B

B = Set of second elements of the ordered pair elements of A × B.

So, clearly xy, and z are the elements of A; and

1 and 2 are the elements of B.

As n(A) = 3 and n(B) = 2, it is clear that set A = {xyz} and set B = {1, 2}.

10. The Cartesian product A × A has 9 elements among which are found (–1, 0) and (0, 1). Find the set A and the remaining elements of A × A.

Solution: –

We know that,

If n(A) = and n(B) = q, then n(A × B) = pq.

Also, n(A × A) = n(A) × n(A)

Given,

n(A × A) = 9

So, n(A) × n(A) = 9

Thus, n(A) = 3

Also given that, the ordered pairs (–1, 0) and (0, 1) are two of the nine elements of A × A.

And, we know in A × A = {(a, a): a ∈ A}.

Thus, –1, 0, and 1 has to be the elements of A.

As n(A) = 3, clearly A = {–1, 0, 1}.

Hence, the remaining elements of set A × A are as follows:

(–1, –1), (–1, 1), (0, –1), (0, 0), (1, –1), (1, 0), and (1, 1)


Exercise 2.2

1. Let A = {1, 2, 3, … , 14}. Define a relation R from A to A by R = {(xy): 3x – y = 0, where xy  A}. Write down its domain, codomain and range.

Solution: –

The relation R from A to A is given as:

R = {(xy): 3x – y = 0, where xy ∈ A}

= {(xy): 3x = y, where xy ∈ A}

So,

R = {(1, 3), (2, 6), (3, 9), (4, 12)}

Now,

The domain of R is the set of all first elements of the ordered pairs in the relation.

Hence, Domain of R = {1, 2, 3, 4}

The whole set A is the codomain of the relation R.

Hence, Codomain of R = A = {1, 2, 3, …, 14}

The range of R is the set of all second elements of the ordered pairs in the relation.

Hence, Range of R = {3, 6, 9, 12}

2. Define a relation R on the set N of natural numbers by R = {(xy): y = x + 5, x is a natural number less than 4; xy  N}. Depict this relationship using roster form. Write down the domain and the range.

Solution: –

The relation R is given by:

R = {(xy): y = x + 5, x is a natural number less than 4, xy ∈ N}

The natural numbers less than 4 are 1, 2, and 3.

So,

R = {(1, 6), (2, 7), (3, 8)}

Now,

The domain of R is the set of all first elements of the ordered pairs in the relation.

Hence, Domain of R = {1, 2, 3}

The range of R is the set of all second elements of the ordered pairs in the relation.

Hence, Range of R = {6, 7, 8}

3. A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(xy): the difference between x and y is odd; x  A,  B}. Write R in roster form.

Solution: –

Given,

A = {1, 2, 3, 5} and B = {4, 6, 9}

The relation from A to B is given as:

R = {(xy): the difference between x and y is odd; x ∈ A, ∈ B}

Thus,

R = {(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)}

4. The figure shows a relationship between the sets P and Q. write this relation

(i) in set-builder form (ii) in roster form.

What is its domain and range?

Solution: –

From the given figure, it’s seen that

P = {5, 6, 7}, Q = {3, 4, 5}

The relation between P and Q:

Set-builder form

(i) R = {(x, y): y = x – 2; x ∈ P} or R = {(x, y): y = x – 2 for x = 5, 6, 7}

Roster form

(ii) R = {(5, 3), (6, 4), (7, 5)}

Domain of R = {5, 6, 7}

Range of R = {3, 4, 5}

5. Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by

{(ab): ab  A, b is exactly divisible by a}.

(i) Write R in roster form

(ii) Find the domain of R

(iii) Find the range of R.

Solution: –

Given,

A = {1, 2, 3, 4, 6} and relation R = {(ab): ab ∈ A, b is exactly divisible by a}

Hence,

(i) R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (6, 6)}

(ii) Domain of R = {1, 2, 3, 4, 6}

(iii) Range of R = {1, 2, 3, 4, 6}

6. Determine the domain and range of the relation R defined by R = {(xx + 5): x  {0, 1, 2, 3, 4, 5}}.

Solution: –

Given,

Relation R = {(xx + 5): x ∈ {0, 1, 2, 3, 4, 5}}

Thus,

R = {(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)}

So,

Domain of R = {0, 1, 2, 3, 4, 5} and,

Range of R = {5, 6, 7, 8, 9, 10}

7. Write the relation R = {(xx3): is a prime number less than 10} in roster form.

Solution: –

Given,

Relation R = {(xx3): is a prime number less than 10}

The prime numbers less than 10 are 2, 3, 5, and 7.

Therefore,

R = {(2, 8), (3, 27), (5, 125), (7, 343)}

8. Let A = {xy, z} and B = {1, 2}. Find the number of relations from A to B.

Solution: –

Given, A = {xy, z} and B = {1, 2}.

Now,

A × B = {(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)}

As n(A × B) = 6, the number of subsets of A × B will be 26.

Thus, the number of relations from A to B is 26.

9. Let R be the relation on Z defined by R = {(ab): ab  Z, – b is an integer}. Find the domain and range of R.

Solution: –

Given,

Relation R = {(ab): ab ∈ Z, – b is an integer}

We know that the difference between any two integers is always an integer.

Therefore,

Domain of R = Z and Range of R = Z


Exercise 2.3

1. Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}

(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}

(iii) {(1, 3), (1, 5), (2, 5)}

Solution: –

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}

As 2, 5, 8, 11, 14, and 17 are the elements of the domain of the given relation having their unique images, this relation can be called as a function.

Here, domain = {2, 5, 8, 11, 14, 17} and range = {1}

(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}

As 2, 4, 6, 8, 10, 12, and 14 are the elements of the domain of the given relation having their unique images, this relation can be called as a function.

Here, domain = {2, 4, 6, 8, 10, 12, 14} and range = {1, 2, 3, 4, 5, 6, 7}

(iii) {(1, 3), (1, 5), (2, 5)}

It’s seen that the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation cannot be called as a function.

2. Find the domain and range of the following real function:

(i) f(x) = –|x| (ii) f(x) = √(9 – x2

Solution: –

(i) Given,

f(x) = –|x|, x ∈ R

We know that,

As f(x) is defined for x ∈ R, the domain of f is R.

It is also seen that the range of f(x) = –|x| is all real numbers except positive real numbers.

Therefore, the range of f is given by (–∞, 0].

(ii) f(x) = √(9 – x2)

As √(9 – x2) is defined for all real numbers that are greater than or equal to –3 and less than or equal to 3, for 9 – x2 ≥ 0.

So, the domain of f(x) is {x: –3 ≤ x ≤ 3} or [–3, 3].

Now,

For any value of x in the range [–3, 3], the value of f(x) will lie between 0 and 3.

Therefore, the range of f(x) is {x: 0 ≤ x ≤ 3} or [0, 3].

3. A function f is defined by f(x) = 2x – 5. Write down the values of

(i) f(0), (ii) f(7), (iii) f(–3)

Solution: –

Given,

Function, f(x) = 2x – 5.

Therefore,

(i) f(0) = 2 × 0 – 5 = 0 – 5 = –5

(ii) f(7) = 2 × 7 – 5 = 14 – 5 = 9

(iii) f(–3) = 2 × (–3) – 5 = – 6 – 5 = –11

4. The function ‘t’ which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by.

Find (i) t (0) (ii) t (28) (iii) t (–10) (iv) The value of C, when t(C) = 212

Solution: –

5. Find the range of each of the following functions.

(i) f(x) = 2 – 3xx  R, x > 0.

(ii) f(x) = x2 + 2, x is a real number.

(iii) f(x) = xx is a real number.

Solution: –

(i) Given,

f(x) = 2 – 3xx ∈ R, x > 0.

We have,

x > 0

So,

3x > 0

-3x < 0 [Multiplying by -1 both the sides, the inequality sign changes]

2 – 3x < 2

Therefore, the value of 2 – 3x is less than 2.

Hence, Range = (–∞, 2)

(ii) Given,

f(x) = x2 + 2, x is a real number

We know that,

x2 ≥ 0

So,

x2 + 2 ≥ 2 [Adding 2 both the sides]

Therefore, the value of x2 + 2 is always greater or equal to 2 for x is a real number.

Hence, Range = [2, ∞)

(iii) Given,

f(x) = x, x is a real number

Clearly, the range of f is the set of all real numbers.

Thus,

Range of f = R