

CBSE NCERT Solutions for Class 12 Maths Chapter 10

Back of Chapter Questions

Exercise: 10.1

1. Represent graphically a displacement of 40 km, 30° east of north. [2 Marks]

Solution:

Here, vector \overrightarrow{OP} represents the displacement of 40 km, 30° East of North.

2. Classify the following measures as scalars and vectors. [1 Mark each]

- (i) 10 kg
- (ii) 2 metres north-west
- (iii) 40°
- (iv) 40 watt
- (v) 10⁻¹⁹ coulomb
- (vi) 20 m/s²

Solution:

(i) 10 kg is a scalar quantity because it involves only magnitude. [1 Mark]

(ii) 2 meters north-west is a vector quantity as it involves both magnitude and direction.

[1 Mark]

(iii) 40° is a scalar quantity as it involves only magnitude. [1 Mark]

(iv) 40 watts is a scalar quantity as it involves only magnitude. [1 Mark]

(v) 10^{-19} coulomb is a scalar quantity as it involves only magnitude. [1 Mark]

(vi) 20 m/s² is a vector quantity as it involves magnitude as well as direction. [1 Mark]

- 3. Classify the following as scalar and vector quantities. [1 Mark each]
 - (i) time period
 - (ii) distance
 - (iii) force
 - (iv) velocity
 - (v) work done

Solution:

- (i) Time period is a scalar quantity as it involves only magnitude. [1 Mark]
- (ii) Distance is a scalar quantity as it involves only magnitude. [1 Mark]

(iii) Force is a vector quantity as it involves both magnitude and direction. [1 Mark]

(iv) Velocity is a vector quantity as it involves both magnitude as well as direction. [1 Mark]

(v) Work done is a scalar quantity as it involves only magnitude. [1 Mark]

4. In Figure, identify the following vectors.[1 Mark each]

Call: +91 - 9686 - 083 - 421 Page 2 of 44 www.vikrantacademy.org

- (i) Coinitial
- (ii) Equal
- (iii) Collinear but not equal

Solution:

(i) Vectors \vec{a} and \vec{d} are coinitial because they have the same initial point. [1 Mark]

(ii) Vectors \vec{b} are \vec{d} equal because they have the same magnitude and direction. [1 Mark]

(iii) Vectors \vec{a} and \vec{b} are collinear but not equal. This is because although they are parallel, their directions are not the same. [1 Mark]

5. Answer the following as true or false. [1 Mark each]

- (i) \vec{a} and $-\vec{a}$ are collinear.
- (ii) Two collinear vectors are always equal in magnitude.
- (iii) Two vectors having same magnitude are collinear.
- (iv) Two collinear vectors having the same magnitude are equal.

Solution:

(i) True.

Two vectors are collinear if they are parallel to line the same line.

+----→m

Vectors \vec{a} and $-\vec{a}$ are parallel to the same line \vec{m} .

So, \vec{a} and $-\vec{a}$ are collinear.

(ii) False.

Collinear vectors are those vectors that are parallel to the same line.

$$\rightarrow \rightarrow \rightarrow \vec{b}$$

Here, \vec{a} and \vec{b} are parallel to \vec{m}

Hence, collinear.

But, \vec{a} and \vec{b} are not equal in magnitude.

[1 Mark]

(iii) False.

Two or more vectors are collinear if they are parallel to the same line.

 \vec{a} and \vec{b} are equal in magnitude but not parallel to the same line

Hence, \vec{a} and \vec{b} are not collinear. [1 Mark]

(iv) False

Two or more vectors are equal if they have the same magnitude and same direction Collinear vectors may have the same magnitude but are not equal.

Hence false. [1 Mark]

Exercise: 10.2

1. Compute the magnitude of the following vectors:

[4 Marks]

$$\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}; \quad \vec{b} = 2\hat{\imath} - 7\hat{\jmath} - 3\hat{k}; \quad \vec{c} = \frac{1}{\sqrt{3}}\hat{\imath} + \frac{1}{\sqrt{3}}\hat{\jmath} - \frac{1}{\sqrt{3}}\hat{k}$$

Solution:

Given vectors are
$$\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$$
; $\vec{b} = 2\hat{\imath} - 7\hat{\jmath} - 3\hat{k}$; $\vec{c} = \frac{1}{\sqrt{3}}\hat{\imath} + \frac{1}{\sqrt{3}}\hat{\jmath} - \frac{1}{\sqrt{3}}\hat{k}$ [1 Mark]

Magnitude of \vec{a} is $|\vec{a}| = \sqrt{(1)^2 + (1)^2 + (1)^2} = \sqrt{3}$

Hence,
$$|\vec{a}| = \sqrt{3}$$
 [1 Mark]

Magnitude of \vec{b} is $|\vec{b}| = \sqrt{(2)^2 + (-7)^2 + (-3)^2}$

$$=\sqrt{4+49+9}$$

$$= \sqrt{62}$$

Hence,
$$|\vec{b}| = \sqrt{62}$$
 [1 Mark]

Magnitude of \vec{c} is $|\vec{c}| = \sqrt{\left(\frac{1}{\sqrt{3}}\right)^2 + \left(\frac{1}{\sqrt{3}}\right)^2 + \left(-\frac{1}{\sqrt{3}}\right)^2}$

$$= \sqrt{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = 1$$

Hence, $|\vec{c}| = 1$ [1 Mark]

Write two different vectors having same magnitude.

[2 Marks]

Solution:

Let
$$\vec{a} = (-\hat{\imath} - 2\hat{\jmath} + 3\hat{k})$$
 and $\vec{b} = (2\hat{\imath} + \hat{\jmath} - 3\hat{k})$

Now, magnitude of
$$\vec{a}$$
 is $|\vec{a}| = \sqrt{(-1)^2 + (-2)^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}$ [1 Mark]

$$|\vec{b}| = \sqrt{2^2 + 1^2 + (-3)^2} = \sqrt{4 + 1 + 9} = \sqrt{14}$$
 [1 Mark]

Hence, \vec{a} and \vec{b}

3. Write two different vectors having same direction.

[2 Marks]

Solution:

Let
$$\vec{a} = (\hat{i} + \hat{j} + \hat{k})$$
 and $\vec{b} = (2\hat{i} + 2\hat{j} + 2\hat{k})$.

The direction cosines of \vec{a} are given by,

$$l = \frac{1}{\sqrt{1^2 + 1^2 + 1^2}} = \frac{1}{\sqrt{3}}, m = \frac{1}{\sqrt{1^2 + 1^2 + 1^2}} = \frac{1}{\sqrt{3}}, \text{ and } m = \frac{1}{\sqrt{1^2 + 1^2 + 1^2}} = \frac{1}{\sqrt{3}}$$
 [1 Mark]

The direction cosines of \vec{b} are given by,

$$l = \frac{2}{\sqrt{2^2 + 2^2 + 2^2}} = \frac{2}{2\sqrt{3}} = \frac{1}{\sqrt{3}}, m = \frac{2}{\sqrt{2^2 + 2^2 + 2^2}} = \frac{2}{2\sqrt{3}} = \frac{1}{\sqrt{3}},$$
And $n = \frac{2}{\sqrt{2^2 + 2^2 + 2^2}} = \frac{2}{2\sqrt{3}} = \frac{1}{\sqrt{3}}$ [1 Mark]

The direction cosines of \vec{a} and \vec{b} are the same. Hence, the two vectors have the same direction.

4. Find the values of x and y so that the vectors $2\hat{i} + 3\hat{j}$ and $x\hat{i} + \hat{y}$ are equal [1 Mark]

Solution:

The two vectors $2\hat{\imath} + 3\hat{\jmath}$ and $x\hat{\imath} + \hat{y}$ will be equal if their corresponding components are equal.

Hence, the required values of x and y are 2 and 3 respectively. [1 Mark]

Find the scalar and vector components of the vector with initial point (2,1) and terminal point (-5,7).

Solution:

Let the given points be P(2,1) and Q(-5,7)

The vector with the initial point P(2,1) and terminal point Q(-5,7) can be given by,

$$\overrightarrow{PQ} = (-5 - 2)\hat{\imath} + (7 - 1)\hat{\jmath}$$

$$\Rightarrow \overrightarrow{PQ} = -7\hat{\imath} + 6\hat{\jmath}$$
[\frac{1}{2} Mark]

Hence, the required scalar components are -7 and 6 while the vector components are $-7\hat{\imath}$ and $6\hat{\jmath}$.

6. Find the sum of the vectors $\vec{a} = \hat{\imath} - 2\hat{\jmath} + \hat{k}$, $\vec{b} = -2\hat{\imath} + 4\hat{\jmath} + 5\hat{k}$ and

$$\vec{c} = \hat{\imath} - 6\hat{\jmath} - 7\hat{k}$$

[1 Mark]

Solution:

The given vectors are $\vec{a} = \hat{\imath} - 2\hat{\jmath} + \hat{k}$, $\vec{b} = -2\hat{\imath} + 4\hat{\jmath} + 5\hat{k}$ and $\vec{c} = \hat{\imath} - 6\hat{\jmath} - 7\hat{k}$

$$\therefore \vec{a} + \vec{b} + \vec{c} = (1 - 2 + 1)\hat{\imath} + (-2 + 4 - 6)\hat{\jmath} + (1 + 5 - 7)\hat{k}$$

 $\left[\frac{1}{2} \text{Mark}\right]$

$$= 0 \cdot \hat{\imath} - 4\hat{\jmath} - 1 \cdot \hat{k}$$

$$=-4\hat{j}-\hat{k}$$

 $\left[\frac{1}{2} \text{Mark}\right]$

7. Find the unit vector in the direction of the vector $\vec{a} = \hat{\imath} + \hat{\jmath} + 2\hat{k}$.

[1 Mark]

Solution:

The unit vector \hat{a} in the direction of vector $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$.

$$|\vec{a}| = \sqrt{1^2 + 1^2 + 2^2} = \sqrt{1 + 1 + 4} = \sqrt{6}$$

 $\left[\frac{1}{2} \text{Mark}\right]$

$$\therefore \hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{\hat{i} + \hat{j} + 2\hat{k}}{\sqrt{6}} = \frac{1}{\sqrt{6}}\hat{i} + \frac{1}{\sqrt{6}}\hat{j} + \frac{2}{\sqrt{6}}\hat{k}$$

 $\left[\frac{1}{2} \text{Mark}\right]$

8. Find the unit vector in the direction of vector, \overrightarrow{PQ} , where P and Q are the points (1,2,3) and (4,5,6), respectively. [2 Marks]

Solution:

The given points are P(1,2,3) and Q(4,5,6).

$$\vec{PQ} = (4-1)\hat{i} + (5-2)\hat{j} + (6-3)\hat{k} = 3\hat{i} + 3\hat{j} + 3\hat{k}$$

$$|\overrightarrow{PQ}| = \sqrt{3^2 + 3^2 + 3^2} = \sqrt{9 + 9 + 9} = \sqrt{27} = 3\sqrt{3}$$

[1 Mark]

Hence, the unit vector in the direction of \overrightarrow{PQ} is

$$\frac{\overline{PQ}}{|\overline{PQ}|} = \frac{3l+3j+3\hat{k}}{3\sqrt{3}} = \frac{1}{\sqrt{3}}\hat{l} + \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k}$$

9. For given vectors, $\vec{a}=2\hat{\imath}-\hat{\jmath}+2\hat{k}$ and $\vec{b}=-\hat{\imath}+\hat{\jmath}-\hat{k}$ find the unit vector in the direction of the vector $\vec{a}+\vec{b}$ [2 Marks]

Solution:

The given vectors are $\vec{a}=2\hat{\imath}-\hat{\jmath}+2\hat{k}$ and $\vec{b}=-\hat{\imath}+\hat{\jmath}-\hat{k}$.

$$\vec{a} = 2\hat{\imath} - \hat{\jmath} + 2\hat{k}$$

$$\vec{b} = -\hat{\imath} + \hat{\jmath} - \hat{k}$$

$$\vec{a} + \vec{b} = (2 - 1)\hat{\imath} + (-1 + 1)\hat{\jmath} + (2 - 1)\hat{k} = 1\hat{\imath} + 0\hat{\jmath} + 1\hat{k} = \hat{\imath} + \hat{k}$$
 [1 Mark]

$$|\vec{a} + \vec{b}| = \sqrt{1^2 + 1^2} = \sqrt{2}$$

Hence, the unit vector in the direction of $(\vec{a} + \vec{b})$ is

$$\frac{(\vec{a} + \vec{b})}{|\vec{a} + \vec{b}|} = \frac{t + \hat{k}}{\sqrt{2}} = \frac{1}{2}\hat{i} + \frac{1}{\sqrt{2}}\hat{k}$$
 [1 Mark]

10. Find a vector in the direction of vector $5\hat{j} - \hat{j} + 2\hat{k}$ which has magnitude 8 units. [2 Marks]

Solution:

Let
$$\vec{a} = 5\hat{j} - \hat{j} + 2\hat{k}$$

$$|\vec{a}| = \sqrt{5^2 + (-1)^2 + 2^2} = \sqrt{25 + 1 + 4} = \sqrt{30}$$

$$\therefore \hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{5i - j + 2\hat{k}}{\sqrt{30}}$$

Hence, the unit vector in the direction of vector $5\hat{j} - \hat{j} + 2\hat{k}$ which has magnitude 8 units is given by,

$$8\hat{a} = 8\left(\frac{5\hat{\imath} - \hat{\jmath} + 2\hat{k}}{\sqrt{30}}\right) = \frac{40}{\sqrt{30}}\hat{\imath} - \frac{8}{\sqrt{30}}\hat{\jmath} + \frac{16}{\sqrt{30}}\hat{k}$$

$$=8\left(\frac{5\vec{\imath}-\vec{\jmath}+2\vec{k}}{\sqrt{30}}\right)$$

$$= \frac{40}{\sqrt{30}} \vec{i} - \frac{8}{\sqrt{30}} \vec{j} + \frac{16}{\sqrt{30}} \vec{k}$$

[1 Mark]

11. Show that the vectors $2\hat{i} - 3\hat{j} + 4\hat{k}$ and $-4\hat{i} + 6\hat{j} - 8\hat{k}$ are collinear. [2 Marks]

Solution:

Let
$$\vec{a} = 2\hat{\imath} - 3\hat{\jmath} + 4\hat{k}$$
 and $\vec{b} = -4\hat{\imath} + 6\hat{\jmath} - 8\hat{k}$.

It is observed that
$$\vec{b} = -4\hat{\imath} + 6\hat{\jmath} - 8\hat{k} = -2(2\hat{\imath} - 3\hat{\jmath} + 4\hat{k}) = -2\vec{a}$$

[1 Mark]

$$\vec{b} = \lambda \vec{a}$$

Where,

$$\lambda = -2$$

Hence, the given vectors are collinear.

[1 Mark]

12. Find the direction cosines of the vector $\hat{i} + 2\hat{j} + 3\hat{k}$

[1 Mark]

Solution:

Let
$$\vec{a} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$$

$$|\vec{a}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}$$

 $\left[\frac{1}{2} \text{Mark}\right]$

Hence, the direction cosines of
$$\vec{a}$$
 are $\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$.

 $\left[\frac{1}{2} \text{Mark}\right]$

13. Find the direction cosines of the vector joining the points A(1,2,-3) and B(-1,-2,1) directed from A to B. [1 Mark]

Solution:

The given points are A(1,2,-3) and B(-1,-2,1).

$$\vec{AB} = (-1 - 1)\hat{i} + (-2 - 2)\hat{j} + \{1 - (-3)\}\hat{k}$$

$$\Rightarrow \overrightarrow{AB} = -2\hat{\imath} - 4\hat{\jmath} + 4\hat{k}$$

 $\left[\frac{1}{2} \text{Mark}\right]$

Hence, the direction cosines of \overrightarrow{AB} are $\left(-\frac{2}{6}, -\frac{4}{6}, \frac{4}{6}\right) = \left(-\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}\right)$.

 $\left[\frac{1}{2} \text{Mark}\right]$

14. Show that the vector $\hat{i} + \hat{j} + \hat{k}$ is equally inclined to the axes OX, OY, and OZ.[1 Mark]

Solution:

Let
$$\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$$

Then,

$$|\vec{a}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$$

Therefore, the direction cosines of \vec{a} are $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.

 $\left[\frac{1}{2} \text{Mark}\right]$

Now, let α , β , and γ be the angles formed by \vec{a} with the positive directions of x, y, and z axes.

Then, we have

$$\cos \alpha = \frac{1}{\sqrt{3}}, \cos \beta = \frac{1}{\sqrt{3}}, \cos \gamma = \frac{1}{\sqrt{3}}$$

Hence, the given vector is equally inclined to axes OX, OY, and OZ.

 $\left[\frac{1}{2} \text{Mark}\right]$

- **15.** Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{\imath} + 2\hat{\jmath} \hat{k}$ and $-\hat{\imath} + \hat{\jmath} + \hat{k}$ respectively, in the ration 2: 1
 - (i) internally
 - (ii) externally

Solution:

The position vector of point R dividing the line segment joining two points P and Q in the ratio m: n is given by:

(i) Internally: $\frac{m\vec{b}+n\vec{a}}{m+n}$

[1 Mark]

(ii) Externally: $\frac{m\vec{b}-n\vec{a}}{m-n}$

[1 Mark]

Position vectors of P and Q are given as:

$$\overrightarrow{OP} = \hat{\imath} + 2\hat{\jmath} - \hat{k}$$
 and $\overrightarrow{OQ} = -\hat{\imath} + \hat{\jmath} + \hat{k}$

(i) The position vector of point R which divides the line joining two points P and Q internally in the ratio 2:1 is given by,

$$\overrightarrow{OR} = \frac{2(-\hat{\imath} + \hat{\jmath} + \hat{k}) + 1(\hat{\imath} + 2\hat{\jmath} - \hat{k})}{2 + 1} = \frac{(-2\hat{\imath} + 2\hat{\jmath} + 2\hat{k}) + (\hat{\imath} + 2\hat{\jmath} - \hat{k})}{3}$$

$$= \frac{-i + 4\hat{\jmath} + \hat{k}}{3} = -\frac{1}{3}\hat{\imath} + \frac{4}{3}\hat{\jmath} + \frac{1}{3}\hat{k}$$
[1 Mark]

(ii) The position vector of point R which divides the line joining two points P and Q externally in the ratio 2:1 is given by,

$$\overrightarrow{OR} = \frac{2(-\hat{\imath} + \hat{\jmath} + \hat{k}) - 1(\hat{\imath} + 2\hat{\jmath} - \hat{k})}{2 - 1} = (-2\hat{\imath} + 2\hat{\jmath} + 2\hat{k}) - (\hat{\imath} + 2\hat{\jmath} - \hat{k})$$

$$= -3\hat{\imath} + 3\hat{k}$$
[1 Mark]

16. Find the position vector of the mid-point of the vector joining the points P(2,3,4) and Q(4,1,-2). [1 Mark]

Solution:

The position vector of mid-point R of the vector joining points P(2,3,4) and Q(4,1,-2) is given by,

$$\overrightarrow{OR} = \frac{(2\hat{\imath} + 3\hat{\jmath} + 4\hat{k}) + (4\hat{\imath} + \hat{\jmath} - 2\hat{k})}{2} = \frac{(2+4)\hat{\imath} + (3+1)\hat{\jmath} + (4-2)\hat{k}}{2}$$

$$= \frac{6\hat{\imath} + 4\hat{\jmath} + 2\hat{k}}{2} = 3\hat{\imath} + 2\hat{\jmath} + \hat{k}$$
[\frac{1}{2} Mark]

17. Show that the points A, B and C with position vectors,

 $\vec{a}=3\hat{\imath}-4\hat{\jmath}-4\hat{k}, \vec{b}=2\hat{\imath}-\hat{\jmath}+\hat{k}$ and $\vec{c}=\hat{\imath}-3\hat{\jmath}-5\hat{k}$ respectively form the vertices of a right-angled triangle. [2 Marks]

Solution:

Position vectors of points A, B and C are respectively given as:

$$\vec{a} = 3\hat{\imath} - 4\hat{\jmath} - 4\hat{k}, \vec{b} = 2\hat{\imath} - \hat{\jmath} + \hat{k} \text{ and } \vec{c} = \hat{\imath} - 3\hat{\jmath} - 5\hat{k}$$

$$\vec{AB} = \vec{b} - \vec{a} = (2-3)\hat{i} + (-1+4)\hat{j} + (1+4)\hat{k} = -\hat{i} + 3\hat{j} + 5\hat{k}$$

$$\overrightarrow{BC} = \overrightarrow{c} - \overrightarrow{b} = (1-2)\hat{i} + (-3+1)\hat{j} + (-5-1)\hat{k} = -\hat{i} - 2\hat{j} - 6\hat{k}$$

$$\overrightarrow{CA} = \vec{a} - \vec{c} = (3-1)\hat{i} + (-4+3)\hat{j} + (-4+5)\hat{k} = 2\hat{i} - \hat{j} + \hat{k}$$

$$\therefore |\overrightarrow{AB}|^2 = (-1)^2 + 3^2 + 5^2 = 1 + 9 + 25 = 35$$

[1 Mark]

$$\left|\overrightarrow{BC}\right|^2 = (-1)^2 + (-2)^2 + (-6)^2 = 1 + 4 + 36 = 41$$

$$\left|\overrightarrow{CA}\right|^2 = 2^2 + (-1)^2 + 1^2 = 4 + 1 + 1 = 6$$

Hence, ABC is a right-angled triangle.

[1 Mark]

18. In triangle ABC which of the following is not true:

$$A. \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$$

$$B. \overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AC} = \overrightarrow{0}$$

$$C. \overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{CA} = \overrightarrow{0}$$

$$D. \overrightarrow{AB} - \overrightarrow{CB} + \overrightarrow{CA} = \overrightarrow{0}$$

Solution:

On applying the triangle law of addition in the given triangle, we have:

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
 ...(1)

$$\Rightarrow \overrightarrow{AB} + \overrightarrow{BC} = -\overrightarrow{CA}$$

$$\Rightarrow \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0} \qquad \dots (2)$$

: The equation given in alternative A is true.

[1 Mark]

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

$$\Rightarrow \overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AC} = \overrightarrow{0}$$

: The equation given in alternative B is true.

[1 Mark]

From equation (2), we have:

$$\overrightarrow{AB} - \overrightarrow{CB} + \overrightarrow{CA} = \overrightarrow{0}$$

: The equation given in alternative D is true.

[1 Mark]

Now, consider the equation given in alternative C:

$$\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{CA} = \overrightarrow{0}$$

$$\Rightarrow \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{CA}$$
 ...(3)

From equations (1) and (3), we have:

$$\overrightarrow{AC} = \overrightarrow{CA}$$

$$\Rightarrow \overrightarrow{AC} = -\overrightarrow{AC}$$

$$\Rightarrow \overrightarrow{AC} + \overrightarrow{AC} = \overrightarrow{0}$$

$$\Rightarrow 2\overrightarrow{AC} = \overrightarrow{0}$$

 $\Rightarrow \overrightarrow{AC} = \overrightarrow{0}$, which is not true.

Hence, the equation given in alternative C is incorrect.

[1 Mark]

The correct Answer is C.

- 19. If \vec{a} and \vec{b} are two collinear vectors, then which of the following are incorrect:[4 Marks]
 - A. $\vec{b} = \lambda \vec{a}$, for some scalar λ
 - B. $\vec{a} = \pm \vec{b}$
 - C. the respective components of \vec{a} and \vec{b} are proportional
 - D. both the vectors \vec{a} and \vec{b} have same direction, but different magnitudes

Solution:

If \vec{a} and \vec{b} are two collinear vectors, then they are parallel.

Therefore, we have:

$$\vec{b} = \lambda \vec{a}$$
 (For some scalar λ)

[1 Mark]

If
$$\lambda = \pm 1$$
, then $\vec{a} = \pm \vec{b}$

If
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, then

$$\vec{b} = \lambda \vec{a}$$

$$\Rightarrow b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} = \lambda (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k})$$

$$\Rightarrow b_1 \hat{\imath} + b_2 \hat{\jmath} + b_3 \hat{k} = (\lambda a_1) \hat{\imath} + (\lambda a_2) \hat{\jmath} + (\lambda a_3) \hat{k}$$

$$\Rightarrow b_1 = \lambda a_1, b_2 = \lambda a_2, b_3 = \lambda a_3$$

$$\Rightarrow \frac{b_1}{a_1} = \frac{b_2}{a_2} = \frac{b_3}{a_3} = \lambda$$

[1 Mark]

Thus, the respective components of \vec{a} and \vec{b} are proportional.

However, vectors \vec{a} and \vec{b} can have different directions.

Hence, the statement given in D is incorrect.

The correct Answer is D.

[2 Marks]

Exercise: 10.3

1. Find the angle between two vectors \vec{a} and \vec{b} and with magnitudes $\sqrt{3}$ and 2, respectively having $\vec{a} \cdot \vec{b} = \sqrt{6}$. [2 Marks]

Solution:

It is given that,

$$|\vec{a}| = \sqrt{3}$$
, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = \sqrt{6}$

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta$$

Now, we know that

$$\therefore \sqrt{6} = \sqrt{3} \times 2 \times \cos\theta$$

$$\Rightarrow \cos\theta = \frac{\sqrt{6}}{\sqrt{3} \times 2}$$

$$\Rightarrow \cos\theta = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

Hence, the angle between the given vectors \vec{a} and \vec{b} is $\frac{\pi}{4}$

[1 Mark]

2. Find the angle between the vectors $\hat{i} - 2\hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$ [2 Marks]

Solution:

The given vectors are $\vec{a} = \hat{\imath} - 2\hat{\jmath} + 3\hat{k}$ and $\vec{b} = 3\hat{\imath} - 2\hat{\jmath} + \hat{k}$

$$|\vec{a}| = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}$$

$$|\vec{b}| = \sqrt{3^2 + (-2)^2 + 1^2} = \sqrt{9 + 4 + 1} = \sqrt{14}$$

Now,
$$\vec{a} \cdot \vec{b} = (\hat{\imath} - 2\hat{\jmath} + 3\hat{k})(3\hat{\imath} - 2\hat{\jmath} + \hat{k})$$

$$= 1.3 + (-2)(-2) + 3.1$$

= 10

[1 Mark]

Also, we know that $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

$$\therefore 10 = \sqrt{14}\sqrt{14}\cos\theta$$

$$\Rightarrow \cos\theta = \frac{10}{14}$$

$$\Rightarrow \theta = \cos^{-1}\left(\frac{5}{7}\right)$$

[1 Mark]

3. Find the projection of the vector $\hat{i} - \hat{j}$ on the vector $\hat{i} + \hat{j}$.

[1 Mark]

Solution:

Let
$$\vec{a} = \hat{\imath} - \hat{\jmath}$$
 and $\vec{b} = \hat{\imath} + \hat{\jmath}$.

 $\left[\frac{1}{2} \text{Mark}\right]$

Now, projection of vector \vec{a} on \vec{b} is given by,

$$\frac{1}{|\vec{b}|} (\vec{a} \cdot \vec{b}) = \frac{1}{\sqrt{1+1}} \{1.1 + (-1)(1)\} = \frac{1}{\sqrt{2}} (1-1) = 0$$

 $\left[\frac{1}{2} \text{Mark}\right]$

Hence, the projection of vector \vec{a} on \vec{b} is 0.

4. Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $7\hat{i} - \hat{j} + 8\hat{k}$. [1 Mark]

Solution:

Let
$$\vec{a} = \hat{\imath} + 3\hat{\jmath} + 7\hat{k}$$
 and $\hat{b} = 7\hat{\imath} - \hat{\jmath} + 8\hat{k}$.

Now, projection of vector \vec{a} on \vec{b} is given by,

$$\frac{1}{|\vec{b}|}(\vec{a} \cdot \vec{b}) = \frac{1}{\sqrt{7^2 + (-1)^2 + 8^2}} \{1(7) + 3(-1) + 7(8)\} = \frac{7 - 3 + 56}{\sqrt{49 + 1 + 64}} = \frac{60}{\sqrt{114}}$$
 [1 Mark]

5. Show that each of the given three vectors is a unit vector:

$$\frac{1}{7}(2\hat{\imath}+3\hat{\jmath}+6\hat{k}),\frac{1}{7}(3\hat{\imath}-6\hat{\jmath}+2\hat{k}),\frac{1}{7}(6\hat{\imath}+2\hat{\jmath}-3\hat{k})$$

Also, show that they are mutually perpendicular to each other.

[2 Marks]

Solution:

Let
$$\vec{a} = \frac{1}{7} (2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}) = \frac{2}{7}\hat{\imath} + \frac{3}{7}\hat{\jmath} + \frac{6}{7}\hat{k}$$
,

$$\vec{b} = \frac{1}{7} (3\hat{\imath} - 6\hat{\jmath} + 2\hat{k}) = \frac{3}{7} \hat{\imath} - \frac{6}{7} \hat{\jmath} + \frac{2}{7} \hat{k}$$

$$\vec{c} = \frac{1}{7} \left(6\hat{\imath} + 2\hat{\jmath} - 3\hat{k} \right) = \frac{6}{7} \hat{\imath} + \frac{2}{7} \hat{\jmath} - \frac{3}{7} \hat{k}$$

$$|\vec{a}| = \sqrt{\left(\frac{2}{7}\right)^2 + \left(\frac{3}{7}\right)^2 + \left(\frac{6}{7}\right)^2} = \sqrt{\frac{4}{49} + \frac{9}{49} + \frac{36}{49}} = 1$$

$$|\vec{b}| = \sqrt{\left(\frac{3}{7}\right)^2 + \left(-\frac{6}{7}\right)^2 + \left(\frac{2}{7}\right)^2} = \sqrt{\frac{9}{49} + \frac{36}{49} + \frac{4}{49}} = 1$$

$$|\vec{c}| = \sqrt{\left(\frac{6}{7}\right)^2 + \left(\frac{2}{7}\right)^2 + \left(-\frac{3}{7}\right)^2} = \sqrt{\frac{36}{49} + \frac{4}{49} + \frac{9}{49}} = 1$$

[1 Mark]

Thus, each of the given three vectors is a unit vector.

Call: +91 - 9686 - 083 - 421 Page 16 of 44 www.vikrantacademy.org

$$\vec{a} \cdot \vec{b} = \frac{2}{7} \times \frac{3}{7} + \frac{3}{7} \times \left(\frac{-6}{7}\right) + \frac{6}{7} \times \frac{2}{7} = \frac{6}{49} - \frac{18}{49} + \frac{12}{49} = 0$$

$$\vec{b} \cdot \vec{c} = \frac{3}{7} \times \frac{6}{7} + \left(\frac{-6}{7}\right) \times \frac{2}{7} + \frac{2}{7} \times \left(\frac{-3}{7}\right) = \frac{18}{49} - \frac{12}{49} - \frac{6}{49} = 0$$

$$\vec{c} \cdot \vec{a} = \frac{6}{7} \times \frac{2}{7} + \frac{2}{7} \times \frac{3}{7} + \left(\frac{-3}{7}\right) \times \frac{6}{7} = \frac{12}{49} + \frac{6}{49} - \frac{18}{49} = 0$$

Hence, the given three vectors are mutually perpendicular to each other.

[1 Mark]

6. Find

 $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 8$ and $|\vec{a}| = 8|\vec{b}|$.

[2 Marks]

Solution:

$$(\vec{a} \cdot \vec{b}) \cdot (\vec{a} - \vec{b}) = 8$$

$$\Rightarrow \vec{a} \cdot \vec{a} - \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} - \vec{b} \cdot \vec{b} = 8$$

$$\Rightarrow |\vec{a}|^2 - \left|\vec{b}\right|^2 = 8$$

$$\Rightarrow (8|\vec{b}|)^2 - |\vec{b}|^2 = 8$$
 $[|\vec{a}| = 8|\vec{b}|]$

$$\Rightarrow 64 \left| \vec{b} \right|^2 - \left| \vec{b} \right|^2 = 8$$

$$\Rightarrow 63|\vec{b}|^2 = 8$$

$$\Rightarrow \left| \vec{b} \right|^2 = \frac{8}{63}$$

$$\Rightarrow |\vec{b}| = \sqrt{\frac{8}{63}}$$
 [Magnitude of a vector is non-negative]

$$\Rightarrow \left| \vec{b} \right| = \frac{2\sqrt{2}}{3\sqrt{7}}$$

[1 Mark]

$$|\vec{a}| = 8|\vec{b}| = \frac{8 \times 2\sqrt{2}}{3\sqrt{7}} = \frac{16\sqrt{2}}{3\sqrt{7}}$$

[1 Mark]

7. Evaluate the product $(3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + 7\vec{b})$.

[1 Mark]

Call: +91 - 9686 - 083 - 421

Page 17 of 44

www.vikrantacademy.org

Solution:

$$(3\vec{a}-5\vec{b})\cdot(2\vec{a}+7\vec{b})$$

$$=3\vec{a}\cdot 2\vec{a}+3\vec{a}\cdot 7\vec{b}-5\vec{b}\cdot 2\vec{a}-5\vec{b}\cdot 7\vec{b}$$

$$\left[\frac{1}{2} \text{Mark}\right]$$

$$= 6\vec{a} \cdot \vec{a} + 21\vec{a} \cdot \vec{b} - 10\vec{a} \cdot \vec{b} - 35\vec{b} \cdot \vec{b}$$

$$= 6|\vec{a}|^2 + 11\vec{a} \cdot \vec{b} - 35|\vec{b}|^2$$

$$\left[\frac{1}{2} \text{Mark}\right]$$

8. Find the magnitude of two vectors \vec{a} and \vec{b} , having the same magnitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$. [1 Mark]

Solution:

Let θ be the angle between the vectors \vec{a} and \vec{b} .

It is given that
$$|\vec{a}| = |\vec{b}|$$
, $\vec{a} \cdot \vec{b} = \frac{1}{2}$, and $\theta = 60^{\circ}$... (1)

We know that $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

$$\therefore \frac{1}{2} = |\vec{a}| |\vec{a}| \cos 60^{\circ} \text{ [Using (1)]}$$

$$\left[\frac{1}{2} \text{Mark}\right]$$

$$\Rightarrow \frac{1}{2} = |\vec{a}|^2 \times \frac{1}{2}$$

$$\Rightarrow |\vec{a}|^2 = 1$$

$$\Rightarrow |\vec{a}| = |\vec{b}| = 1$$

$$\left[\frac{1}{2} Mark\right]$$

9. Find

$$|\vec{x}|$$
 if for a unit vector \vec{a} , $(\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 12$.

[1 Mark]

Solution:

$$(\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 12$$

$$\Rightarrow \vec{x} \cdot \vec{x} + \vec{x} \cdot \vec{a} - \vec{a} \cdot \vec{x} - \bar{a} \cdot \vec{a} = 12$$

 $\left[\frac{1}{2} Mark\right]$

$$\Rightarrow |\vec{x}|^2 - |\vec{a}|^2 = 12$$

$$\Rightarrow |\vec{x}|^2 - 1 = 12[|\vec{a}| = 1 \text{ as } \vec{a} \text{ is a unit vector}]$$

$$\Rightarrow |\vec{x}|^2 = 13$$

$$|\vec{x}| = \sqrt{13}$$

 $\left[\frac{1}{2} \text{Mark}\right]$

10. If $\vec{a} = 2\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$, $\vec{b} = -\hat{\imath} + 2\hat{\jmath} + \hat{k}$ and $\vec{c} = 3\hat{\imath} + \hat{\jmath}$ are such that $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} , then find the value of λ . [2 Marks]

Solution:

The given vectors are $\vec{a} = 2\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$, $\vec{b} = -\hat{\imath} + 2\hat{\jmath} + \hat{k}$ and $\vec{c} = 3\hat{\imath} + \hat{\jmath}$.

Now,

$$\vec{a} + \lambda \vec{b} = (2\hat{\imath} + 2\hat{\jmath} + 3\hat{k}) + \lambda(-\hat{\imath} + 2\hat{\jmath} + \hat{k}) = (2 - \lambda)\hat{\imath} + (2 + 2\lambda)\hat{\jmath} + (3 + \lambda)\hat{k}$$

If $(\vec{a} + \lambda \vec{b})$ is perpendicular to \vec{c} , then

$$\left(\vec{a} + \lambda \vec{b}\right) \cdot \vec{c} = 0$$

[1 Mark]

$$\Rightarrow \left[(2 - \lambda)\hat{\imath} + (2 + 2\lambda)\hat{\jmath} + (3 + \lambda)\hat{k} \right] \cdot (3\hat{\imath} + \hat{\jmath}) = 0$$

$$\Rightarrow (2 - \lambda)3 + (2 + 2\lambda)1 + (3 + \lambda)0 = 0$$

$$\Rightarrow 6 - 3\lambda + 2 + 2\lambda = 0$$

$$\Rightarrow -\lambda + 8 = 0$$

$$\Rightarrow \lambda = 8$$

Hence, the required value of λ is 8.

[1 Mark]

11. Show that:

$$|\vec{a}|\vec{b} + |\vec{b}|\vec{a}$$
 is perpendicular to $|\vec{a}|\vec{b} - |\vec{b}|\vec{a}$,

for any two nonzero vectors \vec{a} and \vec{b}

[1 Mark]

Solution:

Call: +91 - 9686 - 083 - 421

Page 19 of 44

www.vikrantacademy.org

$$(|\vec{a}|\vec{b} + |\vec{b}|\vec{a}) \cdot (|\vec{a}|\vec{b} - |\vec{b}|\vec{a})$$

$$= |\vec{a}|^2 \vec{b} \cdot \vec{b} - |\vec{a}| |\vec{b}| \vec{b} \cdot \vec{a} + |\vec{b}| |\vec{a}| \vec{a} \cdot \vec{b} - |\vec{b}|^2 \vec{a} \cdot \vec{a}$$

 $\left[\frac{1}{2} \text{Mark}\right]$

$$= |\vec{a}|^2 \big| \vec{b} \big|^2 - \big| \vec{b} \big|^2 |\vec{a}|^2$$

= 0

Hence,
$$|\vec{a}|\vec{b} + |\vec{b}|\vec{a}$$
 and $|\vec{a}|\vec{b} - |\vec{b}|\vec{a}$ are perpendicular to each other.

 $\left[\frac{1}{2} Mark\right]$

12. If, $\vec{a} \cdot \vec{a} = 0$ and $\vec{a} \cdot \vec{b} = 0$, then what can be concluded about the vector \vec{b} ? [1 Mark]

Solution:

It is given that $\vec{a} \cdot \vec{a} = 0$ and $\vec{a} \cdot \vec{b} = 0$.

Now.

$$\vec{a} \cdot \vec{a} = 0 \Rightarrow |\vec{a}|^2 = 0 \Rightarrow |\vec{a}| = 0$$

 $\left[\frac{1}{2} \text{Mark}\right]$

∴ a is a zero vector.

Hence, vector
$$\vec{b}$$
 satisfying $\vec{a} \cdot \vec{b} = 0$ can be any vector.

 $\left[\frac{1}{2} \text{Mark}\right]$

13. If \vec{a} , \vec{b} , \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$,

find the value of $\vec{a}\cdot\vec{b}+\vec{b}\cdot\vec{c}+\vec{c}\cdot\vec{a}$

[1 Mark]

Solution:

$$|\vec{a} + \vec{b} + \vec{c}|^2 = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a})$$

$$\Rightarrow 0 = 1 + 1 + 1 + 2 (\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a})$$

 $\left[\frac{1}{2} \text{Mark}\right]$

$$\Rightarrow (\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = \frac{-3}{2}$$

 $\left[\frac{1}{2} \text{Mark}\right]$

14. If either vector $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$, then $\vec{a} \cdot \vec{b} = 0$. But the converse need not be true. Justify your Answer with an example. [2 Marks]

Solution:

Consider $\vec{a} = 2\hat{i} + 4\hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + 3\hat{j} - 6\hat{k}$.

Then,

$$\vec{a} \cdot \vec{b} = 2.3 + 4.3 + 3(-6) = 6 + 12 - 18 = 0$$

.[1 Mark]

We now observe that:

$$|\vec{a}| = \sqrt{2^2 + 4^2 + 3^2} = \sqrt{29}$$

$$\vec{a} \neq \vec{0}$$

$$|\vec{b}| = \sqrt{3^2 + 3^2 + (-6)^2} = \sqrt{54}$$

$$\vec{b} \neq \vec{0}$$

Hence, the converse of the given statement need not be true.

[1 Mark]

15. If the vertices A, B, C of a triangle ABC are (1,2,3), (-1,0,0), (0,1,2), respectively, then find $\angle ABC$. $[\angle ABC$ is the angle between the vectors \overrightarrow{BA} and \overrightarrow{BC} [2 Marks]

Solution:

The vertices of $\triangle ABC$ are given as A(1,2,3), B(-1,0,0), and C(0,1,2).

Also, it is given that $\angle ABC$ is the angle between the vectors \overrightarrow{BA} and \overrightarrow{BC} .

$$\overrightarrow{BA} = \{1 - (-1)\}\hat{i} + (2 - 0)\hat{j} + (3 - 0)\hat{k} = 2\hat{i} + 2\hat{j} + 3\hat{k}$$

$$\overrightarrow{BC} = \{0 - (-1)\}\hat{i} + (1 - 0)\hat{j} + (2 - 0)\hat{k} = \hat{i} + \hat{j} + 2\hat{k}$$

$$\therefore \overrightarrow{BA} \cdot \overrightarrow{BC} = (2\hat{\imath} + 2\hat{\jmath} + 3\hat{k}) \cdot (\hat{\imath} + \hat{\jmath} + 2\hat{k})$$

$$= 2 \times 1 + 2 \times 1 + 3 \times 2 = 2 + 2 + 6 = 10$$

[1 Mark]

$$|\overrightarrow{BA}| = \sqrt{2^2 + 2^2 + 3^2} = \sqrt{4 + 4 + 9} = \sqrt{17}$$

$$|\overrightarrow{BC}| = \sqrt{1 + 1 + 2^2} = \sqrt{6}$$

Now, it is known that:

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = |\overrightarrow{BA}||\overrightarrow{BC}|\cos(\angle ABC)$$

$$\therefore 10 = \sqrt{17} \times \sqrt{6} \cos(\angle ABC)$$

$$\Rightarrow \cos(\angle ABC) = \frac{10}{\sqrt{17} \times \sqrt{6}}$$

$$\Rightarrow \angle ABC = \cos^{-1}\left(\frac{10}{\sqrt{102}}\right)$$

[1 Mark]

16. Show that the points A(1,2,7), B(2,6,3) and C(3,10,-1) are collinear. [2 Marks]

Solution:

The given points are A(1,2,7), B(2,6,3) and C(3,10,-1).

$$\vec{AB} = (2-1)\hat{i} + (6-2)\hat{j} + (3-7)\hat{k} = \hat{i} + 4\hat{j} - 4\hat{k}$$

$$\overrightarrow{BC} = (3-2)\hat{\imath} + (10-6)\hat{\jmath} + (-1-3)\hat{k} = \hat{\imath} + 4\hat{\jmath} - 4\hat{k}$$

$$\overrightarrow{AC} = (3-1)\hat{\imath} + (10-2)\hat{\jmath} + (-1-7)\hat{k} = 2\hat{\imath} + 8\hat{\jmath} - 8\hat{k}$$

[1 Mark]

$$|\vec{AB}| = \sqrt{1^2 + 4^2 + (-4)^2} = \sqrt{1 + 16 + 16} = \sqrt{33}$$

$$|\overrightarrow{BC}| = \sqrt{1^2 + 4^2 + (-4)^2} = \sqrt{1 + 16 + 16} = \sqrt{33}$$

$$|\overrightarrow{AC}| = \sqrt{2^2 + 8^2 + 8^2} = \sqrt{4 + 64 + 64} = \sqrt{132} = 2\sqrt{33}$$

$$\therefore |\overrightarrow{AC}| = |\overrightarrow{AB}| + |\overrightarrow{BC}|$$

Hence, the given points A, B, and C are collinear.

[1 Mark]

17. Show that the vectors $2\hat{\imath} - \hat{\jmath} + \hat{k}$, $\hat{\imath} - 3\hat{\jmath} - 5\hat{k}$ and $3\hat{\imath} - 4\hat{\jmath} - 4\hat{k}$ form the vertices of a right angled triangle. [2 Marks]

Solution:

Let vectors $2\hat{\imath} - \hat{\jmath} + \hat{k}$, $\hat{\imath} - 3\hat{\jmath} - 5\hat{k}$ and $3\hat{\imath} - 4\hat{\jmath} - 4\hat{k}$ be position vectors of points A, B, and C respectively.

i.e.,
$$\overrightarrow{OA} = 2\hat{\imath} - \hat{\jmath} + \hat{k}$$
, $\overrightarrow{OB} = \hat{\imath} - 3\hat{\jmath} - 5\hat{k}$ and $\overrightarrow{OC} = 3\hat{\imath} - 4\hat{\jmath} - 4\hat{k}$

Call: +91 - 9686 - 083 - 421 Page 22 of 44 www.vikrantacademy.org

Now, vectors \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{AC} represent the sides of $\triangle ABC$.

i.e.,
$$\overrightarrow{OA} = 2\hat{\imath} - \hat{\jmath} + \hat{k}$$
, $\overrightarrow{OB} = \hat{\imath} - 3\hat{\jmath} - 5\hat{k}$ and $\overrightarrow{OC} = 3\hat{\imath} - 4\hat{\jmath} - 4\hat{k}$.

$$\vec{AB} = (1-2)\hat{i} + (-3+1)\hat{j} + (-5-1)\hat{k} = -\hat{i} - 2\hat{j} - 6\hat{k}$$

$$\overrightarrow{BC} = (3-1)\hat{\imath} + (-4+3)\hat{\imath} + (-4+5)\hat{k} = 2\hat{\imath} - \hat{\imath} + \hat{k}$$

$$\overrightarrow{AC} = (2-3)\hat{i} + (-1+4)\hat{j} + (1+4)\hat{k} = -\hat{i} + 3\hat{j} + 5\hat{k}$$

$$|\overrightarrow{AB}| = \sqrt{(-1)^2 + (-2)^2 + (-6)^2} = \sqrt{1 + 4 + 36} = \sqrt{41}$$

$$|\overrightarrow{BC}| = \sqrt{2^2 + (-1)^2 + 1^2} = \sqrt{4 + 1 + 1} = \sqrt{6}$$

$$|\overrightarrow{AC}| = \sqrt{(-1)^2 + 3^2 + 5^2} = \sqrt{1 + 9 + 25} = \sqrt{35}$$

$$\therefore \left| \overrightarrow{BC} \right|^2 + \left| \overrightarrow{AC} \right|^2 = 6 + 35 = 41 = \left| \overrightarrow{AB} \right|^2$$

Hence, $\triangle ABC$ is a right-angled triangle.

[1 Mark]

[1 Mark]

18. If \vec{a} is a nonzero vector of magnitude 'a' and λ a nonzero scalar, then $\lambda \vec{a}$ is unit vector

If [1 Mark]

- (A) $\lambda = 1$
- (B) $\lambda = -1$
- (C) $a = |\lambda|$
- (D) $a = \frac{1}{|\lambda|}$

Solution:

Vector $\lambda \vec{a}$ is a unit vector if $|\lambda \vec{a}| = 1$.

Now,

$$|\lambda \vec{a}| = 1$$

$$\Rightarrow |\lambda||\vec{a}| = 1$$

$$\Rightarrow |\vec{a}| = \frac{1}{|\lambda|} [\lambda \neq 0]$$

$$\Rightarrow a = \frac{1}{|\lambda|} [|\vec{a}| = a]$$

Hence, vector $\lambda \vec{a}$ is a unit vector if $a = \frac{1}{|\lambda|}$

 $\left[\frac{1}{2} \text{Mark}\right]$

The correct Answer is D.

 $\left[\frac{1}{2} \text{Mark}\right]$

Exercise: 10.4

1. Find

$$|\vec{a} \times \vec{b}|$$
, if $\vec{a} = \hat{\imath} - 7\hat{\jmath} + 7\hat{k}$ and $\vec{b} = 3\hat{\imath} - 2\hat{\jmath} + 2\hat{k}$

[1 Mark]

Solution:

We have, $\vec{a} = \hat{\imath} - 7\hat{\jmath} + 7\hat{k}$ and $\vec{b} = 3\hat{\imath} - 2\hat{\jmath} + 2\hat{k}$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & -7 & 7 \\ 3 & -2 & 2 \end{vmatrix}$$

$$= \hat{\imath}(-14+14) - \hat{\jmath}(2-21) + \hat{k}(-2+21) = 19\hat{\jmath} + 19\hat{k}$$

 $\left[\frac{1}{2} \text{Mark}\right]$

$$|\vec{a} \times \vec{b}| = \sqrt{(19)^2 + (19)^2} = \sqrt{2 \times (19)^2} = 19\sqrt{2}$$

 $\left[\frac{1}{2} Mark\right]$

2. Find a unit vector perpendicular to each of the vector $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$, where

$$\vec{a} = 3\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$$
 and $\vec{b} = \hat{\imath} + 2\hat{\jmath} - 2\hat{k}$

[2 Marks]

Solution:

We have,

$$\vec{a} = 3\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$$
 and $\vec{b} = \hat{\imath} + 2\hat{\jmath} - 2\hat{k}$

$$\vec{a} + \vec{b} = 4\hat{i} + 4\hat{j}, \vec{a} - \vec{b} = 2\hat{i} + 4\hat{k}$$

$$(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 4 & 4 & 0 \\ 2 & 0 & 4 \end{vmatrix} = \hat{\imath}(16) - \hat{\jmath}(16) + \hat{k}(-8) = 16\hat{\imath} - 16\hat{\jmath} - 8\hat{k}$$

$$=\sqrt{2^2\times 8^2+2^2\times 8^2+8^2}$$

$$= 8\sqrt{2^2 + 2^2 + 1} = 8\sqrt{9} = 8 \times 3 = 24$$

Hence, the unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$, is given by the relation,

$$= \pm \frac{(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})}{|(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})|} = \pm \frac{16\hat{\imath} - 16\hat{\jmath} - 8\hat{k}}{24}$$

$$= \pm \frac{2\hat{\imath} - 2\hat{\jmath} - \hat{k}}{3} = \pm \frac{2}{3}\hat{\imath} \mp \frac{2}{3}\hat{\jmath} \mp \frac{1}{3}\hat{k}$$
[1 Mark]

3. If a unit vector \vec{a} makes an $\frac{\pi}{3}$ with $i, \frac{\pi}{4}$ angle with \hat{j} and an acute angle θ with \hat{k} , then find θ and hence, the compounds of \vec{a} . [4 Marks]

Solution:

Let unit vector \vec{a} have (a_1, a_2, a_3) components.

$$\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$$

Since \vec{a} is a unit vector, $|\vec{a}| = 1$.

Also, it is given that \vec{a} makes angles $\frac{\pi}{3}$ with i, $\frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} . Then, we have:

$$\cos\frac{\pi}{3} = \frac{a_1}{|\vec{a}|}$$

$$\Rightarrow \frac{1}{2} = a_1 \qquad \qquad [|\vec{a}| = 1] \qquad \qquad [\frac{1}{2} \text{Mark}]$$

$$\cos\frac{\pi}{4} = \frac{a_2}{|\vec{a}|}$$

$$\Rightarrow \frac{1}{\sqrt{2}} = a_2 \qquad \qquad [|\vec{a}| = 1] \qquad \qquad [\frac{1}{2} \text{Mark}]$$

Also,
$$\cos\theta = \frac{a_3}{|\vec{a}|}$$
.

$$\Rightarrow a_3 = \cos\theta \qquad \qquad \left[\frac{1}{2}\operatorname{Mark}\right]$$

Now,

$$|a| = 1$$

$$\Rightarrow \sqrt{a_1^2 + a_2^2 + a_3^2} = 1$$
 [\frac{1}{2} Mark]

$$\Rightarrow \left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 + \cos^2\theta = 1$$

$$\Rightarrow \frac{1}{4} + \frac{1}{2} + \cos^2 \theta = 1$$

$$\Rightarrow \frac{3}{4} + \cos^2 \theta = 1$$

$$\Rightarrow \cos^2\theta = 1 - \frac{3}{4} = \frac{1}{4}$$

$$\Rightarrow \cos\theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$$

$$\therefore a_3 = \cos\frac{\pi}{3} = \frac{1}{2}$$

Hence, $\theta = \frac{\pi}{3}$ and the components of \vec{a} are $(\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2})$.

[2 Marks]

4. Show that

$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$$

[1 Mark]

Solution:

$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b})$$

=
$$(\vec{a} - \vec{b}) \times \vec{a} + (\vec{a} - \vec{b}) \times \vec{b}$$
 [By distributive of vector product over addition] [$\frac{1}{2}$ Mark]

$$= \vec{a} \times \vec{a} - \vec{b} \times \vec{a} + \vec{a} \times \vec{b} - \vec{b} \times \vec{b}$$
 [Again, by distributivity of vector product over addition]

Page 26 of 44

$$= \vec{0} + \vec{a} \times \vec{b} + \vec{a} \times \vec{b} - \vec{0}$$

$$= 2\vec{a} \times \vec{b}$$

 $\left[\frac{1}{2} \text{Mark}\right]$

5. Find
$$\lambda$$
 and μ if $(2\hat{\imath} + 6\hat{\jmath} + 27\hat{k}) \times (\hat{\imath} + \lambda\hat{\jmath} + \mu\hat{k}) = \vec{0}$.

[2 Marks]

Solution:

$$(2\hat{\imath} + 6\hat{\jmath} + 27\hat{k}) \times (\hat{\imath} + \lambda\hat{\jmath} + \mu\hat{k}) = \vec{0}$$

Call: +91 - 9686 - 083 - 421

www.vikrantacademy.org

$$\Rightarrow \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 6 & 27 \\ 1 & \lambda & \mu \end{vmatrix} = 0\hat{\imath} + 0\hat{\jmath} + 0\hat{k}$$

$$\Rightarrow \hat{\imath}(6\mu - 27\lambda) - \hat{\jmath}(2\mu - 27) + \hat{k}(2\lambda - 6) = 0\hat{\imath} + 0\hat{\jmath} + 0\hat{k}$$

[1 Mark]

On comparing the corresponding components, we have:

$$6\mu - 27\lambda = 0$$

$$2\mu - 27 = 0$$

$$2\lambda - 6 = 0$$

Now,

$$2\lambda - 6 = 0 \Rightarrow \lambda = 3$$

$$2\mu - 27 = 0 \Rightarrow \mu = \frac{27}{2}$$

Hence
$$\lambda = 3$$
 and $\mu = \frac{27}{2}$.

[1 Mark]

6. Given that $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \times \vec{b} = \vec{0}$.

What can you conclude about the vectors \vec{a} and \vec{b} ?

[1 Mark]

Solution:

$$\vec{a} \cdot \vec{b} = 0$$

Then,

- (i) Either $|\vec{a}| = 0$ or $|\vec{b}| = 0$, or $\vec{a} \perp \vec{b}$ (in case \vec{a} and \vec{b} are non-zero)
- (ii) Either $|\vec{a}|=0$ or $|\vec{b}|=0$, or $\vec{a}\parallel\vec{b}$ (in case \vec{a} and \vec{b} are non-zero)

 $\left[\frac{1}{2} \text{Mark}\right]$

But, \vec{a} and \vec{b} cannot be perpendicular and parallel simultaneously.

Hence,
$$|\vec{a}| = 0$$
 or $|\vec{b}| = 0$

 $\left[\frac{1}{2} \text{Mark}\right]$

7. Let the vectors \vec{a} , \vec{b} , \vec{c} given as $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, $c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$

Call: +91 - 9686 - 083 - 421

Page 27 of 44

www.vikrantacademy.org

Then show that $= \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$

[4 Marks]

Solution:

We have,

$$\vec{a} = a_1 \hat{\imath} + a_2 \hat{\jmath} + a_3 \hat{k}, \vec{b} = b_1 \hat{\imath} + b_2 \hat{\jmath} + b_3 \hat{k}, \vec{c} = c_1 \hat{\imath} + c_2 \hat{\jmath} + c_3 \hat{k}$$

$$(\vec{b} + \vec{c}) = (b_1 + c_1)\hat{\imath} + (b_2 + c_2)\hat{\jmath} + (b_3 + c_3)\hat{k}$$

Now,
$$\vec{a} \times (\vec{b} + \vec{c}) \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \end{vmatrix}$$

$$= \hat{\imath}[a_2(b_3 + c_3) - a_3(b_2 + c_2)] - \hat{\jmath}[a_1(b_3 + c_3) - a_3(b_1 + c_1)] + \hat{k}[a_1(b_2 + c_2) - a_2(b_1 + c_1)]$$

$$= \hat{\imath}[a_2b_3 + a_2c_3 - a_3b_2 - a_3c_2] + \hat{\jmath}[-a_1b_3 - a_3c_3 + a_3b_1 + a_3c_1] + \hat{k}[a_1b_2 + a_1c_2 - a_2b_1 - a_2c_1] \dots (1)$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$= \hat{\imath}[a_2b_3 - a_3b_2] + \hat{\jmath}[b_1a_3 - a_1b_3] + \hat{k}[a_1b_2 - a_2b_1] \dots (2)$$

[1 Mark]

$$\vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$= \hat{\imath}[a_2c_3 - a_3c_2] + \hat{\jmath}[a_3c_1 - a_1c_3] + \hat{k}[a_1c_2 - a_2c_1] \dots (3)$$

[1 Mark]

On adding (2) and (3), we get:

Now, from (1) and (4), we have:

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

Hence, the given result is proved.

[1 Mark]

8. If either $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$, then $\vec{a} \times \vec{b} = \vec{0}$.

Call: +91 - 9686 - 083 - 421

Page 28 of 44

Is the converse true? Justify your Answer with an example.

[2 Marks]

Solution:

Take any parallel non-zero vectors so that $\vec{a} \times \vec{b} = \vec{0}$.

Let
$$\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}, \vec{b} = 4\hat{i} + 6\hat{j} + 8\hat{k}$$

Then.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 3 & 4 \\ 4 & 6 & 8 \end{vmatrix} = \hat{\imath}(24 - 24) - \hat{\jmath}(16 - 16) + \hat{k}(12 - 12) = 0\hat{\imath} + 0\hat{\jmath} + 0\hat{k} = \vec{0}$$

It can now be observed that:

$$|\vec{a}| = \sqrt{2^2 + 3^2 + 4^2} = \sqrt{29}$$

[1 Mark]

$$\vec{a} \neq \vec{0}$$

$$|\vec{b}| = \sqrt{4^2 + 6^2 + 8^2} = \sqrt{116}$$

$$\vec{b} \neq \vec{0}$$

Hence, the converse of the given statement need not be true.

[1 Mark]

9. Find the area of the triangle with vertices A(1,1,2), B(2,3,5) and C(1,5,5). [2 Marks]

Solution:

The vertices of triangle ABC are given as A(1,1,2), B(2,3,5) and C(1,5,5).

The adjacent sides \overrightarrow{AB} and \overrightarrow{BC} of $\triangle ABC$ are given as:

$$\overrightarrow{AB} = (2-1)\hat{\imath} + (3-1)\hat{\jmath} + (5-2)\hat{k} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$$

$$\overrightarrow{BC} = (1-2)\hat{\imath} + (5-3)\hat{\jmath} + (5-5)\hat{k} = -\hat{\imath} + 2\hat{\jmath}$$

[1 Mark]

Area of $\triangle ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{BC}|$

$$\overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ -1 & 2 & 0 \end{vmatrix} = \hat{i}(-6) - \hat{j}(3) + \hat{k}(2+2) = -6\hat{i} - 3\hat{j} + 4\hat{k}$$

$$\therefore |\overrightarrow{AB} \times \overrightarrow{BC}| = \sqrt{(-6)^2 + (-3)^2 + 4^2} = \sqrt{36 + 9 + 16} = \sqrt{61}$$

[1 Mark]

Hence, the area of $\triangle ABC$ is $\frac{\sqrt{61}}{2}$ square units.

10. Find the area of the parallelogram whose adjacent sides are determined by the vector $\vec{a} = \hat{\imath} - \hat{\jmath} + 3\hat{k}$ and $\vec{b} = 2\hat{\imath} - 7\hat{\jmath} + \hat{k}$. [2 Marks]

Solution:

The area of the parallelogram whose adjacent sides are \vec{a} and \vec{b} is $|\vec{a} \times \vec{b}|$.

Adjacent sides are given as:

$$\vec{a} = \hat{\imath} - \hat{\jmath} + 3\hat{k}$$
 and $\vec{b} = 2\hat{\imath} - 7\hat{\jmath} + \hat{k}$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 3 \\ 2 & -7 & 1 \end{vmatrix} = \hat{i}(-1+21) - \hat{j}(1-6) + \hat{k}(-7+2) = 20\hat{i} + 5\hat{j} - 5\hat{k}[1 \text{ Mark}]$$

$$|\vec{a} \times \vec{b}| = \sqrt{20^2 + 5^2 + 5^2} = \sqrt{400 + 25 + 25} = 15\sqrt{2}$$

Hence, the area of the given parallelogram is $15\sqrt{2}$ square units.

[1 Mark]

- **11.** Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a}\times\vec{b}$ is a unit vector, if the angle between \vec{a} and \vec{b} is
 - $(A)\frac{\pi}{6}$
 - (B) $\frac{\pi}{4}$
 - (C) $\frac{\pi}{3}$
 - $(D)\frac{\pi}{2}$

Solution:

It is given that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$

We know that $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$, where is a unit vector perpendicular to both \vec{a} and \vec{b} and θ is the angle between \vec{a} and \vec{b} .

Now, $\vec{a} \times \vec{b}$ is a unit vector if $|\vec{a} \times \vec{b}| = 1$

$$\left| \vec{a} \times \vec{b} \right| = 1$$

$$\Rightarrow \left| |\vec{a}| |\vec{b}| \sin \theta \hat{n} \right| = 1$$

$$\Rightarrow | |\vec{a}| |\vec{b}| \sin \theta | = 1$$

$$\Rightarrow 3 \times \frac{\sqrt{2}}{3} \times \sin \theta = 1$$

[1 Mark]

$$\Rightarrow \sin\theta = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

Hence, $\vec{a} \times \vec{b}$ is a unit vector if the angle between \vec{a} and \vec{b} is $\frac{\pi}{4}$.

The correct Answer is B.

[1 Mark]

- **12.** Area of a rectangle having vertices A, B, C, and D with position vectors $-\hat{\imath} + \frac{1}{2}\hat{\jmath} + 4\hat{k}$, $\hat{\imath} + \frac{1}{2}\hat{\jmath} + 4\hat{k}$ and $-\hat{\imath} \frac{1}{2}\hat{\jmath} + 4\hat{k}$ respectively is [2 Marks]
 - $(A)^{\frac{1}{2}}$
 - (B) 1
 - (C)2
 - (D) 4

Solution:

The position vectors of vertices A, B, C, and D of rectangle ABCD are given as:

$$\overrightarrow{\mathrm{OA}} = -\hat{\imath} + \frac{1}{2}\hat{\jmath} + 4\hat{k}, \overrightarrow{\mathrm{OB}} = \hat{\imath} + \frac{1}{2}\hat{\jmath} + 4\hat{k}, \overrightarrow{\mathrm{OC}} = \hat{\imath} - \frac{1}{2}\hat{\jmath} + 4\hat{k}, \overrightarrow{\mathrm{OD}} = -\hat{\imath} - \frac{1}{2}\hat{\jmath} + 4\hat{k}$$

The adjacent sides \overrightarrow{AB} and \overrightarrow{BC} of the given rectangle are given as:

$$\overrightarrow{AB} = (1+1)\hat{i} + (\frac{1}{2} - \frac{1}{2})\hat{j} + (4-4)\hat{k} = 2\hat{i}$$

$$\overrightarrow{BC} = (1-1)\hat{i} + \left(-\frac{1}{2} - \frac{1}{2}\right)\hat{j} + (4-4)\hat{k} = -\hat{j}$$

[1 Mark]

$$\therefore \overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 0 \\ 0 & -1 & 0 \end{vmatrix} = \hat{k}(-2) = -2\hat{k}$$

$$|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(-2)^2} = 2$$

Now, it is known that the area of a parallelogram whose adjacent sides are \vec{a} and \vec{b} is $|\vec{a} \times \vec{b}|$.

Hence, the area of the given rectangle is $|\overrightarrow{AB} \times \overrightarrow{BC}| = 2$ square units.

The correct Answer is C.

[1 Mark]

Miscellaneous exercise

 Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of xaxis.

Solution:

If \vec{r} is a unit vector in the XY-plane, then $\vec{r} = \cos \theta \hat{j} + \sin \theta \hat{j}$.

Here, θ is the angle made by the unit vector with the positive direction of the x-axis.

Therefore, for $\theta = 30^{\circ}$:

 $\left[\frac{1}{2} \text{Mark}\right]$

$$\vec{r} = \cos 30^{\circ} \hat{\imath} + \sin 30^{\circ} \hat{\jmath} = \frac{\sqrt{3}}{2} \hat{\imath} + \frac{1}{2} \hat{\jmath}$$

Hence, the required unit vector is $=\frac{\sqrt{3}}{2}\hat{\imath} + \frac{1}{2}\hat{\jmath}$

 $\left[\frac{1}{2} \text{Mark}\right]$

2. Find the scalar components and magnitude of the vector joining the points

$$P(x_1, y_1, z_1)$$
 and $Q(x_2, y_2, z_2)$.

[2 Marks]

Solution:

The vector joining the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$

 \overrightarrow{PQ} =Position vector of Q -Position vector of P.

$$= (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$

[1 Mark]

$$|\overrightarrow{PQ}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Hence, the scalar components and the magnitude of the vector joining the given points are respectively $\{(x_2-x_1),(y_2-y_1),(z_2-z_1)\}$ and $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$

A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops.
 Determine the girl's displacement from her initial point of departure. [2 Marks]

Solution:

Let O and B be the initial and final positions of the girl respectively.

Then, the girl's position can be shown as:

Now, we have:

$$\overrightarrow{OA} = -4\hat{\imath}$$

$$\overrightarrow{AB} = \hat{\imath} |\overrightarrow{AB}| \cos 60^{\circ} + \hat{\jmath} |\overrightarrow{AB}| \sin 60^{\circ}$$

$$= i3 \times \frac{1}{2} + j3 \times \frac{\sqrt{3}}{2}$$

$$=\frac{3}{2}\hat{\imath}+\frac{3\sqrt{3}}{2}\hat{\jmath}$$

[1 Mark]

By the triangle law of vector addition, we have:

$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$$

$$= (-4\hat{\imath}) + \left(\frac{3}{2}\hat{\imath} + \frac{3\sqrt{3}}{2}\hat{\jmath}\right)$$

$$=\left(-4+\frac{3}{2}\right)\hat{\imath}+\frac{3\sqrt{3}}{2}\hat{\jmath}$$

$$=\left(\frac{-8+3}{2}\right)\hat{\imath}+\frac{3\sqrt{3}}{2}\hat{\jmath}$$

$$=\frac{-5}{2}\hat{\imath}+\frac{3\sqrt{3}}{2}\hat{\jmath}$$

Hence, the girl's displacement from her initial point of departure is

$$= \frac{-5}{2}\hat{\imath} + \frac{3\sqrt{3}}{2}\hat{\jmath}.$$

4. If
$$\vec{a} = \vec{b} + \vec{c}$$
, then is it true that $|\vec{a}| = |\vec{b}| + |\vec{c}|$? Justify your Answer. [2 Marks]

Solution:

In $\triangle ABC$, let $\overrightarrow{CB} = \vec{a}$, $\overrightarrow{CA} = \vec{b}$ and $\overrightarrow{AB} = \vec{c}$ (as shown in the following figure)

Now, by the triangle law of vector addition, we have $\vec{a} = \vec{b} + \vec{c}$.

[1 Mark]

It is clearly known that $|\vec{a}|$, $|\vec{b}|$ and $|\vec{c}|$ represent the sides of $\triangle ABC$.

Also, it is known that the sum of the lengths of any two sides of a triangle is greater than the third side.

$$|\vec{a}| < |\vec{b}| + |\vec{c}|$$

Hence, it is not true that $|\vec{a}| = |\vec{b}| + |\vec{c}|$.

[1 Mark]

5. Find the value of x for which
$$x(\hat{i} + \hat{j} + \hat{k})$$
 is a unit vector.

[1 Mark]

Solution:

$$x(\hat{\imath} + \hat{\jmath} + \hat{k})$$
 is a unit vector if $|x(\hat{\imath} + \hat{\jmath} + \hat{k})| = 1$.

Now,

$$|x(\hat{\imath} + \hat{\jmath} + \hat{k})| = 1$$

$$\Rightarrow \sqrt{x^2 + x^2 + x^2} = 1$$

$$\Rightarrow \sqrt{3x^2} = 1$$

$$\Rightarrow \sqrt{3}x = 1$$

 $\left[\frac{1}{2} \text{Mark}\right]$

$$\Rightarrow x = \pm \frac{1}{\sqrt{3}}$$

Hence, the required value of x is $\pm \frac{1}{\sqrt{3}}$.

 $\left[\frac{1}{2} Mark\right]$

6. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\vec{a} = 2\hat{\imath} + 3\hat{\jmath} - \hat{k}$ and $\vec{b} = \hat{\imath} - 2\hat{\jmath} + \hat{k}$. [2 Marks]

Solution:

We have,

$$\vec{a} = 2\hat{\imath} + 3\hat{\jmath} - \hat{k}$$
 and $\vec{b} = \hat{\imath} - 2\hat{\jmath} + \hat{k}$

Let \vec{c} be the resultant of \vec{a} and \vec{b} .

Then,

$$\vec{c} = \vec{a} + \vec{b} = (2+1)\hat{\imath} + (3-2)\hat{\jmath} + (-1+1)\hat{k} = 3\hat{\imath} + \hat{\jmath}$$

$$\therefore |\vec{c}| = \sqrt{3^2 + 1^2} = \sqrt{9+1} = \sqrt{10}$$

$$\therefore \hat{c} = \frac{\vec{c}}{|\vec{c}|} = \frac{(3\hat{\imath} + \hat{\jmath})}{\sqrt{10}}$$
[1 Mark]

Hence, the vector of magnitude 5 units and parallel to the resultant of vectors \vec{a} and \vec{b} is

$$\pm 5 \cdot \hat{c} = \pm 5 \cdot \frac{1}{\sqrt{10}} (3\hat{\iota} + \hat{j}) = \pm \frac{3\sqrt{10}\hat{\iota}}{2} \pm \frac{\sqrt{10}}{2} \hat{j}$$
 [1 Mark]

7. If $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$, $\vec{b} = 2\hat{\imath} - \hat{\jmath} + 3\hat{k}$ and $\vec{c} = \hat{\imath} - 2\hat{\jmath} + \hat{k}$, find a unit vector parallel to the vector $2\vec{a} - \vec{b} + 3\vec{c}$. [2 Marks]

Solution:

We have,

$$\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}, \vec{b} = 2\hat{\imath} - \hat{\jmath} + 3\hat{k} \text{ and } \vec{c} = \hat{\imath} - 2\hat{\jmath} + \hat{k}$$

$$2\vec{a} - \vec{b} + 3\vec{c} = 2(\hat{\imath} + \hat{\jmath} + \hat{k}) - (2\hat{\imath} - \hat{\jmath} + 3\hat{k}) + 3(\hat{\imath} - 2\hat{\jmath} + \hat{k})$$

$$= 2\hat{\imath} + 2\hat{\jmath} + 2\hat{k} - 2\hat{\imath} + \hat{\jmath} - 3\hat{k} + 3\hat{\imath} - 6\hat{\jmath} + 3\hat{k}$$

$$= 3\hat{\imath} - 3\hat{\jmath} + 2\hat{k}$$

$$|2\vec{a} - \vec{b} + 3\vec{c}| = \sqrt{3^2 + (-3)^2 + 2^2} = \sqrt{9 + 9 + 4} = \sqrt{22}$$
[1 Mark]

Hence, the unit vector along $2\vec{a} - \vec{b} + 3\vec{c}$ is

$$\frac{2\vec{a} - \vec{b} + 3\vec{c}}{|2\vec{a} - \vec{b} + 3\vec{c}|} = \frac{3t - 3j + 2\hat{k}}{\sqrt{22}} = \frac{3}{\sqrt{22}}\hat{t} - \frac{3}{\sqrt{22}}\hat{j} + \frac{2}{\sqrt{22}}\hat{k}$$

[1 Mark]

Show that the points A(1, -2, -8), B(5,0, -2) and C(11,3,7) are collinear, and find the ratio in which B divides AC.

[4 Marks]

Solution:

The given points are A(1, -2, -8), B(5, 0, -2) and C(11, 3, 7).

$$\vec{AB} = (5-1)\hat{i} + (0+2)\hat{j} + (-2+8)\hat{k} = 4\hat{i} + 2\hat{j} + 6\hat{k}$$

$$\overrightarrow{BC} = (11-5)\hat{\imath} + (3-0)\hat{\imath} + (7+2)\hat{k} = 6\hat{\imath} + 3\hat{\imath} + 9\hat{k}$$

$$\overrightarrow{AC} = (11-1)\hat{\imath} + (3+2)\hat{\jmath} + (7+8)\hat{k} = 10\hat{\imath} + 5\hat{\jmath} + 15\hat{k}$$
 [1 Mark]

$$|\overrightarrow{AB}| = \sqrt{4^2 + 2^2 + 6^2} = \sqrt{16 + 4 + 36} = \sqrt{56} = 2\sqrt{14}$$

$$|\overrightarrow{BC}| = \sqrt{6^2 + 3^2 + 9^2} = \sqrt{36 + 9 + 81} = \sqrt{126} = 3\sqrt{14}$$

$$|\overrightarrow{AC}| = \sqrt{10^2 + 5^2 + 15^2} = \sqrt{100 + 25 + 225} = \sqrt{350} = 5\sqrt{14}$$

$$\therefore |\overrightarrow{AC}| = |\overrightarrow{AB}| + |\overrightarrow{BC}|$$
 [1 Mark]

Thus, the given points A, B and C are collinear.

Now, let point B divide AC in the ratio λ : 1. Then, we have:

$$\overrightarrow{OB} = \frac{\lambda \overrightarrow{OC} + \overrightarrow{OA}}{(\lambda + 1)}$$

$$\Rightarrow 5\hat{\imath} - 2\hat{k} = \frac{\lambda(11\hat{\imath} + 3\hat{\jmath} + 7\hat{k}) + (\hat{\imath} - 2\hat{\jmath} - 8\hat{k})}{\lambda + 1}$$

$$\Rightarrow (\lambda + 1)(5\hat{\imath} - 2\hat{k}) = 11\lambda\hat{\imath} + 3\lambda\hat{\jmath} + 7\lambda\hat{k} + \hat{\imath} - 2\hat{\jmath} - 8\hat{k}$$

$$\Rightarrow 5(\lambda + 1)\hat{i} - 2(\lambda + 1)\hat{k} = (11\lambda + 1)\hat{i} + (3\lambda - 2)\hat{j} + (7\lambda - 8)\hat{k}$$
 [1 Mark]

On equating the corresponding components, we get:

$$5(\lambda + 1) = 11\lambda + 1$$

$$\Rightarrow 5\lambda + 5 = 11\lambda + 1$$

$$\Rightarrow 6\lambda = 4$$

$$\Rightarrow \lambda = \frac{4}{6} = \frac{2}{3}$$

[1 Mark]

9. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $(2\vec{a} + \vec{b})$ and $(\vec{a} - 3\vec{b})$ externally in the ratio 1: 2. Also, show that P is the mid point of the line segment RQ. [2 Marks]

Solution:

It is given that $\overrightarrow{OP} = 2\vec{a} + \vec{b}$, $\overrightarrow{OQ} = \vec{a} - 3\vec{b}$.

It is given that point R divides a line segment joining two points P and Q externally in the ratio 1:2. Then, on using the section formula, we get:

$$\overrightarrow{OR} = \frac{2(2\vec{a} + \vec{b}) - (\vec{a} - 3\vec{b})}{2 - 1} = \frac{4\vec{a} + 2\vec{b} - \vec{a} + 3\vec{b}}{1} = 3\vec{a} + 5\vec{b}$$

[1 Mark]

Therefore, the position vector of point R is $3\vec{a} + 5\vec{b}$

Position vector of the mid-point of RQ = $\frac{\overrightarrow{OQ} + \overrightarrow{OR}}{2}$

$$= \frac{(\vec{a} - 3\vec{b}) + (3\vec{a} + 5\vec{b})}{2}$$

$$=2\vec{a}+\vec{b}$$

$$= \overrightarrow{OP}$$

Hence, P is the mid-point of the line segment RQ.

[1 Mark]

10. The two adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\hat{i} - 2\hat{j} - 3\hat{k}$.

Find the unit vector parallel to its diagonal. Also, find its area.

[2 Marks]

Solution:

Adjacent sides of a parallelogram are given as: $2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\hat{i} - 2\hat{j} - 3\hat{k}$

Then, the diagonal of a parallelogram is given by $\vec{a} + \vec{b}$

$$\vec{a} + \vec{b} = (2+1)\hat{\imath} + (-4-2)\hat{\jmath} + (5-3)\hat{k} = 3\hat{\imath} - 6\hat{\jmath} + 2\hat{k}$$

Thus, the unit vector parallel to the diagonal is

$$\frac{\vec{a} + \vec{b}}{|\vec{a} + \vec{b}|} = \frac{3l - 6j + 2\hat{k}}{\sqrt{3^2 + (-6)^2 + 2^2}} = \frac{3l - 6j + 2\hat{k}}{\sqrt{9 + 36 + 4}} = \frac{3l - 6j + 2\hat{k}}{7} = \frac{3}{7}\hat{i} - \frac{6}{7}\hat{j} + \frac{2}{7}\hat{k}$$

[1 Mark]

 \therefore Area of parallelogram ABCD = $|\vec{a} \times \vec{b}|$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -4 & 5 \\ 1 & -2 & -3 \end{vmatrix}$$

$$= \hat{\imath}(12+10) - \hat{\jmath}(-6-5) + \hat{k}(-4+4)$$

$$= 22\hat{i} + 11\hat{j}$$

$$=11(2\hat{\imath}+\hat{\jmath})$$

$$|\vec{a} \times \vec{b}| = 11\sqrt{2^2 + 1^2} = 11\sqrt{5}$$

Hence, the area of the parallelogram is $11\sqrt{5}$ square units.

[1 Mark]

11. Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$.

Solution:

Let a vector be equally inclined to axes OX, OY and OZ at angle α .

Then, the direction cosines of the vector are $\cos \alpha$, $\cos \alpha$ and $\cos \alpha$.

Now.

$$\cos^2\alpha + \cos^2\alpha + \cos^2\alpha = 1$$

$$\Rightarrow 3\cos^2\alpha = 1$$

$$\Rightarrow \cos \alpha = \frac{1}{\sqrt{3}}$$

 $\left[\frac{1}{2} \text{Mark}\right]$

Hence, the direction cosines of the vector

which are equally inclined to the axes are $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$.

 $\left[\frac{1}{2} Mark\right]$

12. Let $\vec{a} = \hat{\imath} + 4\hat{\jmath} + 2\hat{k}$, $\vec{b} = 3\hat{\imath} - 2\hat{\jmath} + 7\hat{k}$ and $\vec{c} = 2\hat{\imath} - \hat{\jmath} + 4\hat{k}$. Find a vector \vec{a} which is perpendicular to both \vec{a} and \vec{b} , and \vec{c} . $\vec{d} = 15$.

Solution:

Let
$$\vec{d} = d_1\hat{\imath} + d_2\hat{\jmath} + d_3\hat{k}$$
.

Since \vec{d} is perpendicular to both \vec{a} and \vec{b}

$$\vec{d} \cdot \vec{a} = 0$$

$$\Rightarrow d_1 + 4d_2 + 2d_3 = 0$$
 ...(i)

And,

$$\vec{d} \cdot \vec{b} = 0$$

$$\Rightarrow 3d_1 - 2d_2 + 7d_3 = 0$$
 ...(ii)

[1 Mark]

Also, it is given that:

$$\vec{c} \cdot \vec{d} = 15$$

$$\Rightarrow 2d_1 - d_2 + 4d_3 = 15$$
 (iii)

On solving (i), (ii) and (iii) we get:

$$d_1 = \frac{160}{3}$$
, $d_2 = -\frac{5}{3}$ and $d_3 = -\frac{70}{3}$

$$\vec{d} = \frac{160}{3}\hat{i} - \frac{5}{3}\hat{j} - \frac{70}{3}\hat{k} = \frac{1}{3}(160\hat{i} - 5\hat{j} - 70\hat{k})$$

Hence, the required vector is $\frac{1}{3}(160\hat{\imath} - 5\hat{\jmath} - 70\hat{k})$.

[1 Mark]

13. The scalar product of the vector $\hat{\imath} + \hat{\jmath} + \hat{k}$ with a unit vector along the sum of vectors $2\hat{\imath} + 4\hat{\jmath} - 5\hat{k}$ and $\lambda\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ is equal to one. Find the value of λ . **[2 Marks]**

Solution:

$$(2\hat{\imath} + 4\hat{\jmath} - 5\hat{k}) + (\lambda\hat{\imath} + 2\hat{\jmath} + 3\hat{k})$$

$$= (2+\lambda)\hat{\imath} + 6\hat{\jmath} - 2\hat{k}$$

Therefore, unit vector along $(2\hat{\imath} + 4\hat{\jmath} - 5\hat{k}) + (\lambda\hat{\imath} + 2\hat{\jmath} + 3\hat{k})$ is given as:

$$\frac{(2+\lambda)l+6j-2\hat{k}}{\sqrt{(2+\lambda)^2+6^2+(-2)^2}} = \frac{(2+\lambda)l+6j-2\hat{k}}{\sqrt{4+4\lambda+\lambda^2+36+4}} = \frac{(2+\lambda)l+6j-2\hat{k}}{\sqrt{\lambda^2+4\lambda+44}}$$

[1 Mark]

Call: +91 - 9686 - 083 - 421

Page 39 of 44

www.vikrantacademy.org

Scalar product of $(\hat{i} + \hat{j} + \hat{k})$ with this unit vector is 1.

$$\Rightarrow \left(\hat{\imath} + \hat{\jmath} + \hat{k}\right) \cdot \frac{(2+\lambda)\hat{\imath} + 6\hat{\jmath} - 2\hat{k}}{\sqrt{\lambda^2 + 4\lambda + 44}} = 1$$

$$\Rightarrow \frac{(2+\lambda)+6-2}{\sqrt{\lambda^2+4\lambda+44}} = 1$$

$$\Rightarrow \sqrt{\lambda^2 + 4\lambda + 44} = \lambda + 6$$

$$\Rightarrow \lambda^2 + 4\lambda + 44 = (\lambda + 6)^2$$

$$\Rightarrow \lambda^2 + 4\lambda + 44 = \lambda^2 + 12\lambda + 36$$

$$\Rightarrow 8\lambda = 8$$

$$\Rightarrow \lambda = 1$$

Hence, the value of λ is 1.

[1 Mark]

14. If \vec{a} , \vec{b} , \vec{c} are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a} , \vec{b} and \vec{c} . [4 Marks]

Solution:

Since \vec{a} , \vec{b} and \vec{c} are mutually perpendicular vectors, we have $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$. It is given that: $|\vec{a}| = |\vec{b}| = |\vec{c}|$.

Let vector $\vec{a} + \vec{b} + \vec{c}$ be inclined to \vec{a}, \vec{b} and \vec{c} at angles θ_1, θ_2 and θ_3 respectively. [$\frac{1}{2}$ Mark]

Then, we have:

$$\cos\theta_1 = \frac{\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \vec{a}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{a}\right|} = \frac{\vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} + \vec{c} \cdot \vec{a}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{a}\right|}$$

$$= \frac{|\vec{a}|^2}{|\vec{a} + \vec{b} + \vec{c}||\vec{a}|} \quad [\vec{b} \cdot \vec{a} = \vec{c} \cdot \vec{a} = 0]$$

$$= \frac{|\vec{a}|^2}{|\vec{a}+\vec{b}+\vec{c}|}$$

Call: +91 - 9686 - 083 - 421

$$\cos\theta_2 = \frac{\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \vec{b}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{b}\right|} = \frac{\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{b}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \cdot \left|\vec{b}\right|}$$

$$= \frac{\left|\vec{b}\right|^2}{\left|\vec{a} + \vec{b} + \vec{c}\right| \cdot \left|\vec{b}\right|} \quad \left[\vec{a} \cdot \vec{b} = \vec{c} \cdot \vec{b} = 0\right]$$

$$= \frac{\left|\vec{b}\right|^2}{\left|\vec{a} + \vec{b} + \vec{c}\right|}$$

[1 Mark]

$$\cos\theta_3 = \frac{\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \vec{c}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{c}\right|} = \frac{\vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{c}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{c}\right|}$$

$$= \frac{|\vec{c}|^2}{|\vec{a} + \vec{b} + \vec{c}||\vec{c}|} \quad \left[\vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c} = 0 \right]$$

$$= \frac{|\vec{c}|^2}{|\vec{a} + \vec{b} + \vec{c}|}$$

[1 Mark]

Now, as $|\vec{a}| = |\vec{b}| = |\vec{c}|$, $\cos\theta_1 = \cos\theta_2 = \cos\theta_3$

$$\therefore \theta_1 = \theta_2 = \theta_3$$

Hence, the vector $(\vec{a} + \vec{b} + \vec{c})$ is equally inclined to \vec{a} , \vec{b} and \vec{c} .

 $\left[\frac{1}{2} \text{Mark}\right]$

15. Prove that $(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2$, if and only if \vec{a} , \vec{b} are perpendicular, given $\vec{a} \neq \vec{0}$, $\vec{b} \neq \vec{0}$.

Solution:

$$(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2$$

$$\Leftrightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = |\vec{a}|^2 + |\vec{b}|^2$$
 [Distributivity of scalar products over addition]

$$\Leftrightarrow |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 [\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \text{ (Scalar product is commutative)}] \text{[1 Mark]}$$

$$\Leftrightarrow 2\vec{a} \cdot \vec{b} = 0$$

$$\Leftrightarrow \vec{a} \cdot \vec{b} = 0$$

 \vec{a} and \vec{b} are perpendicular. $[\vec{a} \neq \vec{0}, \vec{b} \neq \vec{0}$ (Given)

[1 Mark]

16. If θ is the angle between two vectors \vec{a} and \vec{b} , then $\vec{a} \cdot \vec{b} \ge 0$ only when **[1 Mark]**

(A)
$$0 < \theta < \frac{\pi}{2}$$

(B)
$$0 \le \theta \le \frac{\pi}{2}$$

- (C) $0 < \theta < \pi$
- (D) $0 \le \theta \le \pi$

Solution:

Let θ be the angle between two vectors \vec{a} and \vec{b} .

Then, without loss of generality, \vec{a} and \vec{b} are non-zero vectors so that. $|\vec{a}|$ and $|\vec{b}|$ are positive.

It is known that $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta$

$$:: \vec{a} \cdot \vec{b} \ge 0$$

$$\Rightarrow |\vec{a}||\vec{b}|\cos\theta \ge 0$$

$$\Rightarrow \cos\theta \ge 0 \left[|\vec{a}| \text{and} |\vec{b}| \text{are positive} \right]$$

$$\left[\frac{1}{2} \text{Mark}\right]$$

$$\Rightarrow 0 \leq \theta \leq \frac{\pi}{2}$$

Hence,
$$\vec{a} \cdot \vec{b} \ge 0$$
 when $0 \le \theta \le \frac{\pi}{2}$.

$$\left[\frac{1}{2} \text{Mark}\right]$$

17. Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a} + \vec{b}$ is a unit vector if [2 Marks]

(A)
$$\theta = \frac{\pi}{4}$$

(B)
$$\theta = \frac{\pi}{3}$$

(C)
$$\theta = \frac{\pi}{2}$$

(D)
$$\theta = \frac{2\pi}{3}$$

Solution:

Let \vec{a} and \vec{b} be two unit vectors and θ be the angle between them.

Then,
$$|\vec{a}| = |\vec{b}| = 1$$
.

Now,
$$\vec{a} + \vec{b}$$
 is a unit vector if $|\vec{a} + \vec{b}| = 1$.

$$|\vec{a} + \vec{b}| = 1$$

$$\Rightarrow \left(\vec{a} + \vec{b}\right)^2 = 1$$

$$\Rightarrow (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = 1$$

$$\Rightarrow \vec{a} \cdot \vec{a} + \vec{a}\vec{b} + \vec{b} \cdot \vec{a} + \vec{b}\vec{b} = 1$$

 $\left[\frac{1}{2} Mark\right]$

$$\Rightarrow |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2 = 1$$

$$\Rightarrow 1^2 + 2|\vec{a}||\vec{b}|\cos\theta + 1^2 = 1$$

$$\Rightarrow 1 + 2.1.1\cos\theta + 1 = 1$$

 $\left[\frac{1}{2} Mark\right]$

$$\Rightarrow \cos\theta = -\frac{1}{2}$$

$$\Rightarrow \theta = \frac{2\pi}{3}$$

 $\left[\frac{1}{2} \text{Mark}\right]$

Hence, $\vec{a} + \vec{b}$ is a unit vector if $\theta = \frac{2\pi}{3}$

The correct Answer is D.

 $\left[\frac{1}{2} \text{Mark}\right]$

18. The value of $\hat{\imath}$. $(\hat{\jmath} \times \hat{k}) + \hat{\jmath}$. $(\hat{\imath} \times \hat{k}) + \hat{k}$. $(\hat{\imath} \times \hat{\jmath})$ is

[2 Marks]

- (A) 0
- (B) 1
- (C) 1
- (D) 3

Solution:

$$\hat{\imath}.(\hat{\jmath}\times\hat{k})+\hat{\jmath}.(\hat{\imath}\times\hat{k})+\hat{k}.(\hat{\imath}\times\hat{\jmath})$$

$$= \hat{\imath} \cdot \hat{\imath} + \hat{\jmath} \cdot (-\hat{\jmath}) + \hat{k} \cdot \hat{k}$$

$$=1-\hat{\jmath}\cdot\hat{\jmath}+1$$

 $\left[\frac{1}{2} \text{Mark}\right]$

$$= 1 - 1 + 1$$

$$= 1$$

 $\left[\frac{1}{2} Mark\right]$

The correct Answer is C.

19. If θ is the angle between any two vectors \vec{a} and \vec{b} , then $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$

when θ is equal to

[1 Mark]

- (A) 0
- (B) $\frac{\pi}{4}$
- (C) $\frac{\pi}{2}$
- (D) π

Solution:

Let θ be the angle between two vectors \vec{a} and \vec{b} .

Then, without loss of generality, \vec{a} and \vec{b} are non-zero vectors, so that $|\vec{a}|$ and $|\vec{b}|$ are positive.

$$\left| \vec{a} \cdot \vec{b} \right| = \left| \vec{a} \times \vec{b} \right|$$

$$\Rightarrow |\vec{a}||\vec{b}|\cos\theta = |\vec{a}||\vec{b}|\sin\theta$$

$$\Rightarrow \cos\theta = \sin\theta \left[|\vec{a}| \text{and} |\vec{b}| \text{are positive} \right]$$

$$\Rightarrow \tan \theta = 1$$

$$\left[\frac{1}{2} \text{Mark}\right]$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

Hence, $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$ when θ is equal to $\frac{\pi}{4}$

The correct Answer is B.

 $\left[\frac{1}{2} \text{Mark}\right]$