CBSE NCERT Solutions for Class 10 Science Chapter 2 - Ex

2.1

1. The graphs of $y=p(x)$ are given in following figure, for some polynomials $p(x)$. Find the number of zeroes of $p(x)$, in each case.
(i)

(ii)

(iii)

(iv)

(v)

(vi)

Page - 2

Solution:

(i) Since the graph of $\boldsymbol{p}(x)$ does not cut the X -axis at all. Therefore, the number of zeroes is $\mathbf{0}$.
(ii) As the graph of $\boldsymbol{p}(x)$ intersects the X -axis at only $\mathbf{1}$ point. Therefore, the number of zeroes is $\mathbf{1}$.
(iii) Since the graph of $\boldsymbol{p}(x)$ intersects the X -axis at $\mathbf{3}$ points. Hence, the number of zeroes is 3 .
(iv) As the graph of $\boldsymbol{p}(x)$ intersects the X -axis at $\mathbf{2}$ points. So, the number of zeroes is 2 .
(v) Since the graph of $\boldsymbol{p}(x)$ intersects the X -axis at $\mathbf{4}$ points. Therefore, the number of zeroes is 4 .
(vi) As the graph of $\boldsymbol{p}(x)$ intersects the X-axis at $\mathbf{3}$ points. So, the number of zeroes is $\mathbf{3}$.

CBSE NCERT Solutions for Class 10 Science Chapter 2 - Ex

2.2

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) $x^{2}-2 x-8$
(ii) $4 s^{2}-4 s+1$
(iii) $6 x^{2}-3-7 x$
(iv) $4 u^{2}+8 u$
(v) $t^{2}-15$
(vi) $3 x^{2}-x-4$

Solution:

(i)

$$
\begin{aligned}
& x^{2}-2 x-8 \\
& =x^{2}-4 x+2 x-8 \quad \text { [Factorisation by splitting the middle term] } \\
& =x(x-4)+2(x-4) \\
& =(x-4)(x+2)
\end{aligned}
$$

We know that the zeroes of the quadratic polynomial $a x^{2}+b x+c$ are the same as the roots of the quadratic equation $a x^{2}+b x+c=0$.

Therefore, by equating the given polynomial to zero. We get,
$x^{2}-2 x-8=0$
$\Rightarrow(x-4)(x+2)=0$
$\Rightarrow x-4=0$ or $x+2=0$
$\Rightarrow x=4$ or $x=-2$
Therefore, the zeroes of $x^{2}-2 x-8$ are 4 and -2 .
Sum of zeroes $=4-2=2=\frac{-(-2)}{1}=\frac{-(\text { Coefficient of } x)}{\text { Coefficient of } x^{2}}$
Product of zeroes $=4 \times(-2)=-8=\frac{(-8)}{1}=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$
Hence, the relationship between the zeroes and the coefficients is verified.
(ii) $\quad 4 s^{2}-4 s+1=(2 s-1)^{2} \quad\left[\right.$ Since, $\left.a^{2}-2 a b+b^{2}=(a-b)^{2}\right]$

We know that the zeroes of the quadratic polynomial $a x^{2}+b x+c$ are the same as the roots of the quadratic equation $a x^{2}+b x+c=0$.

Therefore, by equating the given polynomial to zero. We get,
$4 s^{2}-4 s+1=0$
$\Rightarrow(2 s-1)^{2}=0$
Cancelling square on both the sides,
$\Rightarrow 2 s-1=0$
$\Rightarrow s=\frac{1}{2}$
Therefore, the zeroes of $4 s^{2}-4 s+1$ are $\frac{1}{2}$ and $\frac{1}{2}$.
Sum of zeroes $=\frac{1}{2}+\frac{1}{2}=1=\frac{-(-4)}{4}=\frac{-(\text { Cocfficient of } s)}{\left(\text { Coefficicnt of } s^{2}\right)}$
Product of zeroes $=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}=\frac{\text { Constant term }}{\text { Cocfficient of } s^{2}}$
Hence, the relationship between the zeroes and the coefficients is verified.
$6 x^{2}-3-7 x=6 x^{2}-7 x-3$
$=6 x^{2}-9 x+2 x-3 \quad$ [Factorisation by splitting the middle term]
$=3 x(2 x-3)+(2 x-3)$
$=(3 x+1)(2 x-3)$
We know that the zeroes of the quadratic polynomial $a x^{2}+b x+c$ are the same as the roots of the quadratic equation $a x^{2}+b x+c=0$.

Therefore, by equating the given polynomial to zero. We get,
$6 x^{2}-3-7 x=0$
$\Rightarrow 3 x+1=0$ or $2 x-3=0$
$\Rightarrow x=\frac{-1}{3}$ or $x=\frac{3}{2}$
Therefore, the zeroes of $6 x^{2}-3-7 x$ are $\frac{-1}{3}$ and $\frac{3}{2}$.
Sum of zeroes $=\frac{-1}{3}+\frac{3}{2}=\frac{7}{6}=\frac{-(-7)}{6}=\frac{-(\text { Coefficient of } x)}{\text { Coefficient of } x^{2}}$
Product of zeroes $=\frac{-1}{3} \times \frac{3}{2}=\frac{-1}{2}=\frac{-3}{6}=\frac{\text { Constant term }}{\text { Cocfficient of } x^{2}}$
Hence, the relationship between the zeroes and the coefficients is verified.
(iv) $4 u^{2}+8 u=4 u^{2}+8 u+0=4 u(u+2)$

We know that the zeroes of the quadratic polynomial $a x^{2}+b x+c$ are the same as the roots of the quadratic equation $a x^{2}+b x+c=0$.

Therefore, by equating the given polynomial to zero. We get,
$4 u^{2}+8 u=0$
$\Rightarrow 4 u=0$ or $u+2=0$
$\Rightarrow u=0$ or $u=-2$
So, the zeroes of $4 u^{2}+8 u$ are 0 and -2 .
Sum of zeroes $=0+(-2)=-2=\frac{-8}{4}=\frac{-(\text { Cocfficient of } u)}{\text { Cocfficient of } u^{2}}$
Product of zeroes $=0 \times(-2)=0=\frac{0}{4}=\frac{\text { Constant term }}{\text { Cocfficient of } u^{2}}$
Hence, the relationship between the zeroes and the coefficients is verified.
$t^{2}-15=t^{2}-0 . t-15=(t-\sqrt{15})(t+\sqrt{15})\left[\right.$ Since, $a^{2}-b^{2}=$ $(a+b)(a-b)]$

We know that the zeroes of the quadratic polynomial $a x^{2}+b x+c$ are the same as the roots of the quadratic equation $a x^{2}+b x+c=0$.

Therefore, by equating the given polynomial to zero. We get,
$t^{2}-15=0$
$\Rightarrow t-\sqrt{15}=0$ or $t+\sqrt{15}=0$
$\Rightarrow t=\sqrt{15}$ or $t=-\sqrt{15}$
Therefore, the zeroes of $t^{2}-15$ are $\sqrt{15}$ and $-\sqrt{15}$
Sum of zeroes $=\sqrt{15}+(-\sqrt{15})=0=\frac{-0}{1}=\frac{-(\text { Cocfficient of } t)}{\left(\text { Coefficient of } t^{2}\right)}$
Product of zeroes $=(\sqrt{15})(-\sqrt{15})=-15=\frac{-15}{1}=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$
Hence, the relationship between the zeroes and the coefficients is verified.
(vi) $3 x^{2}-x-4$
$=3 x^{2}-4 x+3 x-4 \quad$ [Factorisation by splitting the middle term]
$=x(3 x-4)+(3 x-4)$
$=(3 x-4)(x+1)$

We know that the zeroes of the quadratic polynomial $a x^{2}+b x+c$ are the same as the roots of the quadratic equation $a x^{2}+b x+c=0$.

Therefore, by equating the given polynomial to zero. We get,
$3 x^{2}-x-4=0$
$\Rightarrow 3 x-4=0$ or $x+1=0$
$\Rightarrow x=\frac{4}{3}$ or $x=-1$
Hence, the zeroes of $3 x^{2}-x-4$ are $\frac{4}{3}$ and -1 .
Sum of zeroes $=\frac{4}{3}+(-1)=\frac{1}{3}=\frac{-(-1)}{3}=\frac{-(\text { Cocfficient of } x)}{\text { Cocfficient of } x^{2}}$
Product of zeroes $=\frac{4}{3}(-1)=\frac{-4}{3}=\frac{\text { Constant term }}{\text { Cocficicent of } x^{2}}$
Hence, the relationship between the zeroes and the coefficients is verified.
2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
(i) $\frac{1}{4},-1$
(ii) $\sqrt{2}, \frac{1}{3}$
(iii) $0, \sqrt{5}$
(iv) $\mathbf{1 , 1}$
(v) $-\frac{1}{4}, \frac{1}{4}$
(vi) $\mathbf{4 , 1}$

Solution:

(i) We know that if α and β are the zeroes of a quadratic polynomial $p(x)$, then, the polynomial $p(x)$ can be written as $p(x)=a\left\{x^{2}-\right.$ $(\alpha+\beta) x+\alpha \beta\}$ or,
$p(x)=a\left\{x^{2}-\right.$ (Sum of the zeroes) $x+$ Product of the zeroes $\}$, where a is a non-zero real number.

Given: sum of the roots $=\alpha+\beta=\frac{1}{4}$ and product of the roots $=\alpha \beta=-1$
Hence, the quadratic polynomial $p(x)$ can be written as:
$p(x)=a\left\{x^{2}-\frac{1}{4} x-1\right\}$
$=a\left\{\frac{4 x^{2}-x-4}{4}\right\}$
By taking $a=4$, we get one of the quadratic polynomials which satisfy the given conditions.

Therefore, the quadratic polynomial is $\left(4 x^{2}-x-4\right)$.
(ii) We know that if α and β are the zeroes of a quadratic polynomial $p(x)$, then, the polynomial $p(x)$ can be written as $p(x)=a\left\{x^{2}-\right.$ $(\alpha+\beta) x+\alpha \beta\}$ or,
$p(x)=a\left\{x^{2}-\right.$ (Sum of the zeroes) $x+$ Product of the zeroes $\}$, where a is a non-zero real number.

Given: sum of the roots $=\alpha+\beta=\sqrt{2}$ and product of the roots $=\alpha \beta=\frac{1}{3}$
Hence, the quadratic polynomial $p(x)$ can be written as:

$$
\begin{aligned}
p(x) & =a\left\{x^{2}-\sqrt{2} x+\frac{1}{3}\right\} \\
& =a\left\{\frac{3 x^{2}-3 \sqrt{2} x+1}{3}\right\}
\end{aligned}
$$

By taking $a=3$, we get one of the quadratic polynomials which satisfy the given conditions.

Therefore, the quadratic polynomial is $\left(3 x^{2}-3 \sqrt{2} x+1\right)$.
(iii) We know that if α and β are the zeroes of a quadratic polynomial $p(x)$, then, the polynomial $p(x)$ can be written as $p(x)=a\left\{x^{2}-\right.$ $(\alpha+\beta) x+\alpha \beta\}$ or,
$p(x)=a\left\{x^{2}-\right.$ (Sum of the zeroes) $x+$ Product of the zeroes $\}$, where a is a non-zero real number.

Given: sum of the roots $=\alpha+\beta=0$ and product of the roots $=\alpha \beta=\sqrt{5}$

Hence, the quadratic polynomial $p(x)$ can be written as:

$$
\begin{aligned}
p(x) & =a\left\{x^{2}-0 \cdot x+\sqrt{5}\right\} \\
& =a\left\{x^{2}+\sqrt{5}\right\}
\end{aligned}
$$

By taking $a=1$, we get one of the quadratic polynomials which satisfy the given conditions.

Therefore, the quadratic polynomial is $\left(x^{2}+\sqrt{5}\right)$.
(iv) We know that if α and β are the zeroes of a quadratic polynomial $p(x)$, then, the polynomial $p(x)$ can be written as $p(x)=a\left\{x^{2}-\right.$ $(\alpha+\beta) x+\alpha \beta\}$ or, $p(x)=a\left\{x^{2}-(\right.$ Sum of the zeroes $) x+$ Product of the zeroes $\}$, where a is a non-zero real number.

Given: sum of the roots $=\alpha+\beta=1$ and product of the roots $=\alpha \beta=1$ Hence, the quadratic polynomial $p(x)$ can be written as:

$$
\begin{aligned}
p(x) & =a\left\{x^{2}-1 \cdot x+1\right\} \\
& =a\left\{x^{2}-x+1\right\}
\end{aligned}
$$

By taking $a=1$, we get one of the quadratic polynomials which satisfy the given conditions.

Therefore, the quadratic polynomial is $\left(x^{2}-x+1\right)$.
(v) We know that if α and β are the zeroes of a quadratic polynomial $p(x)$, then, the polynomial $p(x)$ can be written as $p(x)=a\left\{x^{2}-\right.$ $(\alpha+\beta) x+\alpha \beta\}$ or, $p(x)=a\left\{x^{2}-\right.$ (Sum of the zeroes) $x+$ Product of the zeroes $\}$, where a is a non-zero real number.

Given: sum of the roots $=\alpha+\beta=-\frac{1}{4}$ and product of the roots $=\alpha \beta=\frac{1}{4}$
Hence, the quadratic polynomial $p(x)$ can be written as:

$$
p(x)=a\left\{x^{2}+\frac{1}{4} x+\frac{1}{4}\right\}
$$

$$
=a\left\{\frac{4 x^{2}+x+1}{4}\right\}
$$

By taking $a=4$, we get one of the quadratic polynomials which satisfy the given conditions.

Therefore, the quadratic polynomial is $\left(4 x^{2}+x+1\right)$.
(vi) We know that if α and β are the zeroes of a quadratic polynomial $p(x)$, then, the polynomial $p(x)$ can be written as $p(x)=a\left\{x^{2}-\right.$ $(\alpha+\beta) x+\alpha \beta\}$ or,
$p(x)=a\left\{x^{2}-\right.$ (Sum of the zeroes) $x+$ Product of the zeroes $\}$, where a is a non-zero real number.

Given: sum of the roots $=\alpha+\beta=4$ and product of the roots $=\alpha \beta=1$
Hence, the quadratic polynomial $p(x)$ can be written as:

$$
p(x)=a\left\{x^{2}-4 x+1\right\}
$$

By taking $a=1$, we get one of the quadratic polynomials which satisfy the given conditions.

Therefore, the quadratic polynomial is $\left(x^{2}-4 x+1\right)$.

CBSE NCERT Solutions for Class 10 Science Chapter 2 - Ex

2.3

1. Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder in each of the following:
(i) $\quad p(x)=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2$
(ii) $\quad p(x)=x^{4}-3 x^{2}+4 x+5, g(x)=x^{2}+1-x$
(iii) $p(x)=x^{4}-5 x+6, g(x)=2-x^{2}$

Solution:

$$
\begin{equation*}
p(x)=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2 \tag{i}
\end{equation*}
$$

VIKRANTAJADEMY

Here, both the polynomials are already arranged in the descending powers of variable.

The polynomial $p(x)$ can be divided by the polynomial $g(x)$ as follows:

$$
\begin{array}{r}
x ^ { 2 } - 2 \longdiv { x ^ { 3 } - 3 x ^ { 2 } + 5 x - 3 } \\
\begin{array}{l}
x^{3} \quad-2 x
\end{array} \\
-\begin{array}{lr}
-3 x^{2}+7 x-3 \\
\begin{array}{ll}
-3 x^{2} & +6 \\
+ & 7 x-9
\end{array} \\
\hline
\end{array} \\
\hline
\end{array}
$$

Quotient $=x-3$
Remainder $=7 x-9$
(ii)
$p(x)=x^{4}-3 x^{2}+4 x+5=x^{4}+0 . x^{3}-3 x^{2}+4 x+5$,
Here, the polynomial $p(x)$ is already arranged in the descending powers of variable.
$g(x)=x^{2}+1-x$
Here, the polynomial $g(x)$ is not arranged in the descending powers of variable.

Now, $g(x)=x^{2}-x+1$
The polynomial $p(x)$ can be divided by the polynomial $g(x)$ as follows:

$$
\begin{aligned}
& \begin{array}{c}
x ^ { 2 } - x + 1 \longdiv { x ^ { 2 } + x - 3 } \begin{array} { l }
{ x ^ { 4 } + 0 x ^ { 3 } - 3 x ^ { 2 } + 4 x + 5 } \\
{ x ^ { 4 } - x ^ { 3 } + x ^ { 2 } }
\end{array}
\end{array} \\
& \frac{-+\quad-}{x^{3}-4 x^{2}+4 x+5} \\
& x^{3}-x^{2}+x \\
& \frac{-\quad+\quad-}{-3 x^{2}+3 x+5} \\
& -3 x^{2}+3 x-3 \\
& +\quad-\quad+ \\
& 8
\end{aligned}
$$

Quotient $=x^{2}+x-3$
Remainder $=8$
(iii) $p(x)=x^{4}-5 x+6=x^{4}+0 \cdot x^{2}-5 x+6$
$g(x)=2-x^{2}$
Here, the polynomial $g(x)$ is not arranged in the descending powers of variable.

Now, $g(x)=-x^{2}+2$
The polynomial $p(x)$ can be divided by the polynomial $g(x)$ as follows:

$$
\begin{array}{r}
- x ^ { 2 } + 2 \longdiv { \frac { - x ^ { 2 } - 2 } { x ^ { 4 } + 0 x ^ { 2 } - 5 x + 6 } } \begin{array} { l }
{ x ^ { 4 } - 2 x ^ { 2 } }
\end{array} \\
\frac{-\quad+}{2 x^{2}-5 x+6} \begin{array}{l}
2 x^{2} \quad-4 \\
-\quad+ \\
\hline
\end{array} \\
\hline \quad-5 x+10
\end{array}
$$

$$
\text { Quotient }=-x^{2}-2
$$

$$
\text { Remainder }=-5 x+10
$$

2. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
(i) $t^{2}-3,2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$
(ii) $x^{2}+3 x+1,3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$
(iii) $x^{3}-3 x+1, x^{5}-4 x^{3}+x^{2}+3 x+1$

Solution:

(i) The polynomial $2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$ can be divided by the polynomial $t^{2}-3=t^{2}+0 . t-3$ as follows:

$$
\left.\left.\begin{array}{rl}
t^{2}+0 . t-3 & \frac{2 t^{2}+3 t+4}{2 t^{4}+3 t^{3}-2 t^{2}-9 t-12} \\
2 t^{4}+0 . t^{3}-6 t^{2}
\end{array}\right]+\quad \begin{array}{l}
3 t^{3}+4 t^{2}-9 t-12 \\
-\quad 3 t^{3}+0 . t^{2}-9 t
\end{array}\right]+\begin{aligned}
& 4 t^{2}+0 . t-12 \\
& -4 t^{2}+0 . t-12 \\
& -\quad-\quad+ \\
& \hline
\end{aligned}
$$

Since the remainder is 0 , hence $t^{2}-3$ is a factor of $2 t^{4}+3 t^{3}-2 t^{2}-$ $9 t-12$.
(ii) The polynomial $3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$ can be divided by the polynomial $x^{2}+3 x+1$ as follows:

$$
x^{2}+3 x+1 \begin{aligned}
& \frac{3 x^{2}-4 x+2}{3 x^{4}+5 x^{3}-7 x^{2}+2 x+2} \\
& 3 x^{4}+9 x^{3}+3 x^{2} \\
& -\quad-\quad- \\
& -4 x^{3}-10 x^{2}+2 x+2 \\
& -4 x^{3}-12 x^{2}-4 x \\
& +\quad+\quad+ \\
& \frac{2 x^{2}+6 x+2}{2 x^{2}+6 x+2} \\
& 0
\end{aligned}
$$

Since the remainder is 0 , hence $x^{2}+3 x+1$ is a factor of $3 x^{4}+5 x^{3}-$ $7 x^{2}+2 x+2$
(iii) The polynomial $x^{5}-4 x^{3}+x^{2}+3 x+1$ can be divided by the polynomial $x^{3}-3 x+1$ as follows:

$$
\begin{array}{r}
x ^ { 3 } - 3 x + 1 \longdiv { x ^ { 2 } - 1 } \\
\begin{array}{l}
x^{5}-4 x^{3}+x^{2}+3 x+1 \\
-\quad+\quad-x^{3}+x^{2}
\end{array} \\
\begin{array}{lr}
-x^{3} & +3 x+1 \\
-x^{3} & +3 x-1 \\
+ & -\quad+ \\
\hline
\end{array}
\end{array}
$$

Since the remainder is not equal to 0 , hence $x^{3}-3 x+1$ is not a factor of $x^{5}-4 x^{3}+x^{2}+3 x+1$.
3. Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are
$\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

Solution:

Let $p(x)=3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$
It is given that the two zeroes of $p(x)$ are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$
$\therefore\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)=\left(x^{2}-\frac{5}{3}\right)$ is a factor of $p(x) \quad\{$ Since, $(a-b)(a+b)=$ $\left.a^{2}-b^{2}\right\}$

Therefore, on dividing the given polynomial by $x^{2}-\frac{5}{3}$, we obtain remainder as 0 .

$$
\begin{aligned}
& x^{2}+0 x-\frac{5}{3} \begin{array}{l}
3 x^{2}+6 x+3 \\
3 x^{4}+6 x^{3}-2 x^{2}-10 x-5 \\
3 x^{4}+0 x^{3}-5 x^{2}
\end{array} \\
& \frac{-\quad+}{6 x^{3}+3 x^{2}-10 x-5} \begin{array}{r}
6 x^{3}+0 x^{2}-10 x
\end{array} \\
& \begin{array}{r}
-\quad+\quad+0 x-5 \\
3 x^{2}+0 x+0 x-5
\end{array} \\
&-\quad-\quad+ \\
& \hline
\end{aligned}
$$

Hence, $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5=\left(x^{2}-\frac{5}{3}\right)\left(3 x^{2}+6 x+3\right)$
$=3\left(x^{2}-\frac{5}{3}\right)\left(x^{2}+2 x+1\right)$
Now, $x^{2}+2 x+1=(x+1)^{2}$
Thus, the two zeroes of $x^{2}+2 x+1$ are -1 and -1
Therefore, the zeroes of the given polynomial are $\sqrt{\frac{5}{3}},-\sqrt{\frac{5}{3}},-1$ and -1 .
4. On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$, respectively. Find $g(x)$.

Solution:

Dividend, $p(x)=x^{3}-3 x^{2}+x+2$
Quotient $=(x-2)$
Remainder $=(-2 x+4)$
$g(x)$ be the divisor.
According to the division algorithm,
Dividend $=$ Divisor \times Quotient + Remainder
$x^{3}-3 x^{2}+x+2=g(x) \times(x-2)+(-2 x+4)$
$x^{3}-3 x^{2}+x+2+2 x-4=g(x)(x-2)$
$x^{3}-3 x^{2}+3 x-2=g(x)(x-2)$
Now, $g(x)$ is the quotient when $x^{3}-3 x^{2}+3 x-2$ is divided by $x-2$. (Since,
Remainder $=0$)

$$
\begin{aligned}
& x - 2 \longdiv { x ^ { 2 } - x + 1 } \begin{array} { l }
{ x ^ { 3 } - 3 x ^ { 2 } + 3 x - 2 } \\
{ x ^ { 3 } - 2 x ^ { 2 } }
\end{array} \\
& \frac{-+}{-x^{2}+3 x-2} \\
& -x^{2}+2 x \\
& +\quad-\quad \frac{x-2}{} \\
& x-2
\end{aligned}
$$

$\therefore g(x)=x^{2}-x+1$
6. Give examples of polynomials $\mathrm{p}(\mathrm{x}), \mathrm{g}(\mathrm{x}), \mathrm{q}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})$, which satisfy the division algorithm and
(i) $\quad \operatorname{deg} p(x)=\operatorname{deg} q(x)$
(ii) $\quad \operatorname{deg} \mathrm{q}(\mathrm{x})=\operatorname{deg} \mathrm{r}(\mathrm{x})$
(iii) $\operatorname{deg} r(x)=0$

Solution:

According to the division algorithm, if $\mathrm{p}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are two polynomials with $g(x) \neq 0$, then we can find polynomials $q(x)$ and $r(x)$ such that $\mathrm{p}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$, where $\mathrm{r}(\mathrm{x})=0$ or degree of $\mathrm{r}(\mathrm{x})<$ degree of $\mathrm{g}(\mathrm{x})$.
(i) Degree of quotient will be equal to degree of dividend when divisor is constant.

Let us consider the division of $2 \mathrm{x}^{2}+2 \mathrm{x}-16$ by 2 .
Here, $\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{2}+2 \mathrm{x}-16$ and $\mathrm{g}(\mathrm{x})=2$
$\mathrm{q}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}-8$ and $\mathrm{r}(\mathrm{x})=0$
Clearly, the degree of $\mathrm{p}(\mathrm{x})$ and $\mathrm{q}(\mathrm{x})$ is the same which is 2 .

Verification:

$$
\mathrm{p}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})
$$

$2 x^{2}+2 x-16=2\left(x^{2}+x-8\right)+0$
$=2 \mathrm{x}^{2}+2 \mathrm{x}-16$
Thus, the division algorithm is satisfied.
(ii) Let us consider the division of $4 \mathrm{x}+3$ by $\mathrm{x}+2$.

Here, $\mathrm{p}(\mathrm{x})=4 \mathrm{x}+3$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}+2$
$\mathrm{q}(\mathrm{x})=4$ and $\mathrm{r}(\mathrm{x})=-5$
Here, degree of $\mathrm{q}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})$ is the same which is 0 .

Verification:

$\mathrm{p}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$
$4 \mathrm{x}+3=(\mathrm{x}+2) \times 4+(-5)$
$4 x+3=4 x+3$
Thus, the division algorithm is satisfied.
(iii) Degree of remainder will be 0 when remainder obtained on division is a constant.

Let us consider the division of $4 x+3$ by $x+2$.
Here, $\mathrm{p}(\mathrm{x})=4 \mathrm{x}+3$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}+2$
$\mathrm{q}(\mathrm{x})=4$ and $\mathrm{r}(\mathrm{x})=-5$
Here, we get remainder as a constant. Therefore, the degree of $r(x)$ is 0 .
Verification:
$\mathrm{p}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$
$4 \mathrm{x}+3=(\mathrm{x}+2) \times 4+(-5)$
$4 \mathrm{x}+3=4 \mathrm{x}+3$
Thus, the division algorithm is satisfied.

