CBSE NCERT Solutions for Class 9 Mathematics Chapter 15

Back of Chapter Questions

Exercise: 15.1

1. In a cricket match, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.

Solution:

Number of times batswoman hits a boundary $=6$
Total number of balls played by her $=30$
\therefore Number of times that the batswoman does not hit a boundary $=30-6=$ 24

Required Probability
$=\frac{\text { Number of times that the batswoman does not hit a boundary }}{\text { Total number of balls played by her }}$
$=\frac{24}{30}$
$=\frac{4}{5}$
Hence, the probability that she did not hit a boundary is $\frac{4}{5}$.
2. 1500 families with 2 children were selected randomly, and the following data were recorded:

Number of girls in a family	2	1	0
Number of families	475	814	211

Compute the probability of a family, chosen at random, having
(i) 2 girls
(ii) 1 girl
(iii) No girl

Also, check whether the sum of these probabilities is 1 .

Solution:

(i) Total number of families $=475+814+211=1500$

Number of families having 2 girls $=475$
Required Probability $=\frac{\text { Number of families having } 2 \text { girls }}{\text { Total number of families }}$

$$
\begin{aligned}
& =\frac{475}{1500} \\
& =\frac{19}{60}
\end{aligned}
$$

(ii) Number of families having 1 girl $=814$

Required Probability $=\frac{\text { Number of families having } 1 \text { girl }}{\text { Total number of families }}$
$=\frac{814}{1500}$
$=\frac{407}{750}$
(iii) Number of families having no girl $=211$

Required Probability $=\frac{\text { Number of families having no girl }}{\text { Total number of families }}$
$=\frac{211}{1500}$
Sum of all probabilities $=\frac{19}{60}+\frac{407}{750}+\frac{211}{1500}$
$=\frac{475+814+211}{1500}$
$=\frac{1500}{1500}$
$=1$
Thus, the sum of all these probabilities is 1 .
3. In a particular section of Class IX, 40 students were asked about the months of their birth and the following graph was prepared for the data so obtained:

Find the probability that a student of the class was born in August.

Solution:

From the graph, it is clear that, number of students that are born in the month of August $=6$
Total number of students $=40$
Required Probabality $=\frac{\text { Number of students that are born in the month of August }}{\text { Total number of students }}$
$=\frac{6}{40}$
$=\frac{3}{20}$
Hence, the probability that a student of the class was born in August is $\frac{3}{20}$
4. Three coins are tossed simultaneously 200 times with the following
frequencies of different outcomes:

Outcome	3 heads	2 heads	1 head	No head
Frequency	23	72	77	28

If the three coins are simultaneously tossed again, compute the probability of 2 heads coming up.

Solution:

Number of times 2 heads come up $=72$
Total number of times the coins were tossed $=23+72+77+28=200$
Required Probability $=\frac{\text { Number of times } 2 \text { heads come up }}{\text { Total number of times the coins were tossed }}$
$=\frac{72}{200}$
$=\frac{9}{25}$
5. An organization selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:

Monthly income (in Rs)	Vehicles per family			
	0	1	2	Above 2
Less than 7000	10	160	25	0
$7000-10000$	0	305	27	2
$10000-13000$	1	535	29	1
$13000-16000$	2	469	59	25
16000 or more	1	579	82	88

Suppose a family is chosen, find the probability that the family chosen is
(i) earning Rs $10000-13000$ per month and owning exactly 2 vehicles.
(ii) earning Rs 16000 or more per month and owning exactly 1 vehicle.
(iii) earning less than Rs 7000 per month and does not own any vehicle.
(iv) earning Rs $13000-16000$ per month and owning more than 2 vehicles.
(v) owning not more than 1 vehicle.

Solution:

Total number of families surveyed $=2400$
(i) Number of families earning Rs. $10000-13000$ per month and owning exactly 2 vehicles $=29$

Required probability $=$

Number of families earning Rs. $10000-13000$ per month and owning exactly 2 vehicles Total number of families surveyed
$=\frac{29}{2400}$
(ii) Number of families earning Rs. 16000 or more per month and owning exactly 1 vehicle $=579$

Required probability $=$
Number of families earning Rs. 16000 or more per month and owning exactly 1 vehicle
Total number of families surveyed
$=\frac{579}{2400}=\frac{193}{800}$
(iii) Number of families earning less than Rs. 7000 per month and do not own any vehicle $=10$
Required probability $=$
Number of families earning less than Rs. 7000 per month and do not own any vehicle
Total number of families surveyed
$=\frac{10}{2400}=\frac{1}{240}$
(iv) Number of families earning Rs. $13000-16000$ per month and owning more than 2 vehicles $=25$

Required probability $=$
Number of families earning Rs. $13000-16000$ per month and owning more than 2 vehicles Total number of families surveyed
$=\frac{25}{2400}=\frac{1}{96}$
(v) Number of families owning not more than 1 vehicle $=10+160+$
$0+305+1+535+2+469+1+579=2062$
Required probability $=\frac{\text { Number of families owning not more than } 1 \text { vehicle }}{\text { Total number of families surveyed }}$

$$
=\frac{2062}{2400}=\frac{1031}{1200}
$$

6. A teacher wanted to analyze the performance of two sections of students in a mathematics test of 100 marks. Looking at their performances, she found that a few students got under 20 marks and a few got 70 marks or above. So she decided to group them into intervals of varying sizes as follows: $0-20,20-$ $30 \ldots 60-70,70-100$. Then she formed the following table:

	Marks	Number of student
$0-20$	7	
$20-30$	10	
$30-40$	10	
$40-50$		20
$50-60$		20
$60-70$		15
	70 -above	8
	Total	90

(i) Find the probability that a student obtained less than 20% in the mathematics test.
(ii) Find the probability that a student obtained marks 60 or above.

Solution:

Total number of students $=90$
Number of students who obtained less than 20\% marks in the test $=7$
Required probability $=$
Number of students who obtained less than 20% marks in the test
Total number of students
$=\frac{7}{90}$
Hence, the probability that a student obtained less than 20% in the mathematics test is $\frac{7}{90}$.
Number of students who obtained marks 60 or above $=15+8=23$
Required probability $=\frac{\text { Number of students who obtained marks } 60 \text { or above }}{\text { Total number of students }}$ $=\frac{23}{90}$
Hence, the probability that a student obtained marks 60 or above is $\frac{23}{90}$.
7. To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table.

Opinion	Number of students

Like	135
dislike	65

Find the probability that a student chosen at random
(i) likes statistics,
(ii) does not like it

Solution:

(i) Total number of students $=135+65=200$

Number of students who like statistics $=135$
$\mathrm{P}($ student likes statistics $)=\frac{\text { Number of students who like statistics }}{\text { Total number of students }}=$ $\frac{135}{200}=\frac{27}{40}$
Hence, the required probability is $\frac{27}{40}$.
(ii) Number of students who do not like statistics $=65$

P (student does not like statistics) $=1-\mathrm{P}$ (student likes statistics)
$=1-\frac{\text { Number of students who like statistics }}{\text { Total number of students }}$
$=1-\frac{27}{40}$
$=\frac{13}{40}$
Hence, the required probability is $\frac{13}{40}$
8. The distance (in km) of 40 engineers from their residence to their place of work were found as follows:

5	3	10	20	25	11	13	7	12	31
19	10	12	17	18	11	32	17	16	2
7	9	7	8	3	5	12	15	18	3
12	14	2	9	6	15	15	7	6	12

What is the empirical probability that an engineer lives:
(i) less than 7 km from her place of work?
(ii) more than or equal to 7 km from her place of work?
(iii) within $\frac{1}{2} \mathrm{~km}$ from her place of work?

Solution:

Total number of engineers $=40$
(i) Number of engineers living at a distance of less than 7 km form work place $=9$
\therefore Required empirical probability $=$
$\frac{\text { Number of engineers living at a distance of less than } 7 \mathrm{~km} \text { form work place }}{\text { Total number of engineers }}=\frac{9}{40}$
(ii) Number of engineers living at a distance of more than or equal to 7 km from their workplace $=40-9=31$
\therefore Required empirical probability $=\frac{31}{40}$
(iii) Number of engineers living within a distance of $\frac{1}{2} \mathrm{~km}$ from their workplace $=0$
\therefore Required empirical probability $=0$
9. Eleven bags of wheat flour, each marked 5 kg , actually contained the following weights of flour (in kg):
$\begin{array}{llllllllll}4.975 .05 & 5.08 & 5.03 & 5.00 & 5.06 & 5.08 & 4.98 & 5.04 & 5.07 & 5.00\end{array}$
Find the probability that any of these bags chosen at random contains more than 5 kg of flour.

Solution:

Total number of bags $=11$
Number of bags containing more than 5 kg of flour $=7$
Required probability $=\frac{\text { Number of bags containing more than } 5 \mathrm{~kg} \text { of flour }}{\text { Total number of bags }}$
$=\frac{7}{11}$
Hence, the probability that any of these bags chosen at random contains more than 5 kg of flour is $\frac{7}{11}$.
10. A study was conducted to find out the concentration of Sulphur dioxide in the air in parts per million (ppm) of a certain city. The frequency distribution of the data obtained for 30 days is as follows:

Concentration of SO_{2} (in ppm)	Number of days (frequency)
$0.00-0.04$	4
$0.04-0.08$	9
$0.08-0.12$	9
$0.12-0.16$	2
$0.16-0.20$	4
$0.20-0.24$	2

Total	30

Using this table, find the probability of the concentration of sulphur dioxide in the interval $0.12-0.16$ on any of these days.

Solution:

Total number of days $=30$
Number days for which the concentration of sulphur dioxide was in the interval of $0.12-0.16=2$
\therefore Required probability $=$
Number days for which the concentration of sulphur dioxide was in the interval of $0.12-0.16$
Total number of days
$=\frac{2}{30}=\frac{1}{15}$
11. The blood groups of 30 students of class VIII are given in the following frequency distribution table:

Blood group	Number of students
A	9
B	6
AB	3
Total	

Use this table to determine the probability that a student of this class, selected at random, has blood group AB.

Solution:

Total number of students $=30$
Number of students having blood group $\mathrm{AB}=3$
Required Probability $=\frac{\text { Number of students having blood group } \mathrm{AB}}{\text { Total number of students }}$
$=\frac{3}{30}$
$=\frac{1}{10}$
Hence, the probability that a student of this class, selected at random, has blood group $A B$ is $\frac{1}{10}$.

